GenericNonAssociativeAlgebra(R, n, ls, gamma)¶
generic.spad line 1 [edit on github]
AlgebraGenericElementPackage allows you to create generic elements of an algebra, i.e. the scalars are extended to include symbolic coefficients
- 0: %
 from AbelianMonoid
- *: (%, %) -> %
 from Magma
- *: (%, Fraction Polynomial R) -> %
 from RightModule Fraction Polynomial R
- *: (Fraction Polynomial R, %) -> %
 from LeftModule Fraction Polynomial R
- *: (Integer, %) -> %
 from AbelianGroup
- *: (NonNegativeInteger, %) -> %
 from AbelianMonoid
- *: (PositiveInteger, %) -> %
 from AbelianSemiGroup
- *: (SquareMatrix(n, Fraction Polynomial R), %) -> %
 from LeftModule SquareMatrix(n, Fraction Polynomial R)
- +: (%, %) -> %
 from AbelianSemiGroup
- -: % -> %
 from AbelianGroup
- -: (%, %) -> %
 from AbelianGroup
- ^: (%, PositiveInteger) -> %
 from Magma
- alternative?: () -> Boolean
 
- antiCommutator: (%, %) -> %
 
- apply: (Matrix Fraction Polynomial R, %) -> %
 
- associative?: () -> Boolean
 
- associator: (%, %, %) -> %
 from NonAssociativeRng
- associatorDependence: () -> List Vector Fraction Polynomial R
 
- basis: () -> Vector %
 from FramedModule Fraction Polynomial R
- coerce: % -> OutputForm
 from CoercibleTo OutputForm
- coerce: Vector Fraction Polynomial R -> %
 coerce(v)assumes that it is called with a vector of length equal to the dimension of the algebra, then a linear combination with the basis element is formed
- commutative?: () -> Boolean
 
- commutator: (%, %) -> %
 from NonAssociativeRng
- conditionsForIdempotents: () -> List Polynomial R if R has IntegralDomain
 conditionsForIdempotents()determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixedR-module basis- conditionsForIdempotents: Vector % -> List Polynomial Fraction Polynomial R
 
- conditionsForIdempotents: Vector % -> List Polynomial R if R has IntegralDomain
 conditionsForIdempotents([v1, ..., vn])determines a complete list of polynomial equations for the coefficients of idempotents with respect to theR-module basisv1, …,vn
- convert: % -> InputForm if Fraction Polynomial R has Finite
 from ConvertibleTo InputForm
- convert: % -> Vector Fraction Polynomial R
 from FramedModule Fraction Polynomial R
- convert: Vector Fraction Polynomial R -> %
 from FramedModule Fraction Polynomial R
- coordinates: % -> Vector Fraction Polynomial R
 from FramedModule Fraction Polynomial R
- coordinates: (%, Vector %) -> Vector Fraction Polynomial R
 - coordinates: (Vector %, Vector %) -> Matrix Fraction Polynomial R
 - coordinates: Vector % -> Matrix Fraction Polynomial R
 from FramedModule Fraction Polynomial R
- elt: (%, Integer) -> Fraction Polynomial R
 
- generic: () -> %
 generic()returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients\%x1, \%x2, ..
- generic: (Symbol, Vector %) -> %
 generic(s, v)returns a generic element, i.e. the linear combination ofvwith the symbolic coefficientss1, s2, ..
- generic: (Vector Symbol, Vector %) -> %
 generic(vs, ve)returns a generic element, i.e. the linear combination ofvewith the symbolic coefficientsvserror, if the vector of symbols is shorter than the vector of elements
- generic: Symbol -> %
 generic(s)returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficientss1, s2, ..
- generic: Vector % -> %
 generic(ve)returns a generic element, i.e. the linear combination ofvebasis with the symbolic coefficients\%x1, \%x2, ..
- generic: Vector Symbol -> %
 generic(vs)returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficientsvs; error, if the vector of symbols is too short
- genericLeftDiscriminant: () -> Fraction Polynomial R if R has IntegralDomain
 genericLeftDiscriminant()is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable
- genericLeftMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain
 genericLeftMinimalPolynomial(a)substitutes the coefficients of {em a} for the generic coefficients inleftRankPolynomial()
- genericLeftNorm: % -> Fraction Polynomial R if R has IntegralDomain
 genericLeftNorm(a)substitutes the coefficients ofafor the generic coefficients into the coefficient of the constant term in leftRankPolynomial and changes the sign if the degree of this polynomial is odd. This is a form of degreek
- genericLeftTrace: % -> Fraction Polynomial R if R has IntegralDomain
 genericLeftTrace(a)substitutes the coefficients ofafor the generic coefficients into the coefficient of the second highest term in leftRankPolynomial and changes the sign. This is a linear form
- genericLeftTraceForm: (%, %) -> Fraction Polynomial R if R has IntegralDomain
 genericLeftTraceForm (a, b)is defined to begenericLeftTrace (a*b), this defines a symmetric bilinear form on the algebra
- genericRightDiscriminant: () -> Fraction Polynomial R if R has IntegralDomain
 genericRightDiscriminant()is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable
- genericRightMinimalPolynomial: % -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain
 genericRightMinimalPolynomial(a)substitutes the coefficients ofafor the generic coefficients in rightRankPolynomial
- genericRightNorm: % -> Fraction Polynomial R if R has IntegralDomain
 genericRightNorm(a)substitutes the coefficients ofafor the generic coefficients into the coefficient of the constant term in rightRankPolynomial and changes the sign if the degree of this polynomial is odd
- genericRightTrace: % -> Fraction Polynomial R if R has IntegralDomain
 genericRightTrace(a)substitutes the coefficients ofafor the generic coefficients into the coefficient of the second highest term in rightRankPolynomial and changes the sign
- genericRightTraceForm: (%, %) -> Fraction Polynomial R if R has IntegralDomain
 genericRightTraceForm (a, b)is defined to be genericRightTrace (a*b), this defines a symmetric bilinear form on the algebra
- hash: % -> SingleInteger if Fraction Polynomial R has Hashable
 from Hashable
- hashUpdate!: (HashState, %) -> HashState if Fraction Polynomial R has Hashable
 from Hashable
- index: PositiveInteger -> % if Fraction Polynomial R has Finite
 from Finite
- latex: % -> String
 from SetCategory
- leftDiscriminant: () -> Fraction Polynomial R
 - leftDiscriminant: Vector % -> Fraction Polynomial R
 
- leftNorm: % -> Fraction Polynomial R
 
- leftPower: (%, PositiveInteger) -> %
 from Magma
- leftRankPolynomial: () -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain
 leftRankPolynomial()returns the left minimimal polynomial of the generic element- leftRankPolynomial: () -> SparseUnivariatePolynomial Polynomial Fraction Polynomial R
 
- leftRecip: % -> Union(%, failed)
 
- leftRegularRepresentation: % -> Matrix Fraction Polynomial R
 - leftRegularRepresentation: (%, Vector %) -> Matrix Fraction Polynomial R
 
- leftTrace: % -> Fraction Polynomial R
 
- leftTraceMatrix: () -> Matrix Fraction Polynomial R
 - leftTraceMatrix: Vector % -> Matrix Fraction Polynomial R
 
- leftUnit: () -> Union(%, failed)
 
- leftUnits: () -> Union(Record(particular: %, basis: List %), failed)
 leftUnits()returns the affine space of all left units of the algebra, or"failed"if there is none
- lieAlgebra?: () -> Boolean
 
- lookup: % -> PositiveInteger if Fraction Polynomial R has Finite
 from Finite
- opposite?: (%, %) -> Boolean
 from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
 
- random: () -> % if Fraction Polynomial R has Finite
 from Finite
- rank: () -> PositiveInteger
 from FramedModule Fraction Polynomial R
- recip: % -> Union(%, failed)
 
- represents: (Vector Fraction Polynomial R, Vector %) -> %
 - represents: Vector Fraction Polynomial R -> %
 from FramedModule Fraction Polynomial R
- rightDiscriminant: () -> Fraction Polynomial R
 - rightDiscriminant: Vector % -> Fraction Polynomial R
 
- rightNorm: % -> Fraction Polynomial R
 
- rightPower: (%, PositiveInteger) -> %
 from Magma
- rightRankPolynomial: () -> SparseUnivariatePolynomial Fraction Polynomial R if R has IntegralDomain
 rightRankPolynomial()returns the right minimimal polynomial of the generic element- rightRankPolynomial: () -> SparseUnivariatePolynomial Polynomial Fraction Polynomial R
 
- rightRecip: % -> Union(%, failed)
 
- rightRegularRepresentation: % -> Matrix Fraction Polynomial R
 - rightRegularRepresentation: (%, Vector %) -> Matrix Fraction Polynomial R
 
- rightTraceMatrix: () -> Matrix Fraction Polynomial R
 - rightTraceMatrix: Vector % -> Matrix Fraction Polynomial R
 
- rightUnit: () -> Union(%, failed)
 
- rightUnits: () -> Union(Record(particular: %, basis: List %), failed)
 rightUnits()returns the affine space of all right units of the algebra, or"failed"if there is none
- sample: %
 from AbelianMonoid
- size: () -> NonNegativeInteger if Fraction Polynomial R has Finite
 from Finite
- smaller?: (%, %) -> Boolean if Fraction Polynomial R has Finite
 from Comparable
- structuralConstants: () -> Vector Matrix Fraction Polynomial R
 - structuralConstants: Vector % -> Vector Matrix Fraction Polynomial R
 
- subtractIfCan: (%, %) -> Union(%, failed)
 
- unit: () -> Union(%, failed)
 
- zero?: % -> Boolean
 from AbelianMonoid
BiModule(Fraction Polynomial R, Fraction Polynomial R)
Comparable if Fraction Polynomial R has Finite
ConvertibleTo InputForm if Fraction Polynomial R has Finite
Finite if Fraction Polynomial R has Finite
FiniteRankNonAssociativeAlgebra Fraction Polynomial R
FramedModule Fraction Polynomial R
FramedNonAssociativeAlgebra Fraction Polynomial R
Hashable if Fraction Polynomial R has Hashable
LeftModule Fraction Polynomial R
LeftModule SquareMatrix(n, Fraction Polynomial R)
NonAssociativeAlgebra Fraction Polynomial R