LieSquareMatrix(n, R)ΒΆ
lie.spad line 109 [edit on github]
LieSquareMatrix(n
, R
) implements the Lie algebra of the n
by n
matrices over the commutative ring R
. The Lie bracket (commutator) of the algebra is given by a*b := (a *\$SQMATRIX(n, R) b - b *\$SQMATRIX(n, R) a)
, where *$SQMATRIX(``n`, R
)` is the usual matrix multiplication.
- 0: %
from AbelianMonoid
- *: (%, %) -> %
from Magma
- *: (%, R) -> %
from RightModule R
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- ^: (%, PositiveInteger) -> %
from Magma
- alternative?: () -> Boolean
- antiAssociative?: () -> Boolean
- antiCommutative?: () -> Boolean
- antiCommutator: (%, %) -> %
- apply: (Matrix R, %) -> %
from FramedNonAssociativeAlgebra R
- associative?: () -> Boolean
- associator: (%, %, %) -> %
from NonAssociativeRng
- associatorDependence: () -> List Vector R if R has IntegralDomain
- basis: () -> Vector %
from FramedModule R
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> SquareMatrix(n, R)
from CoercibleTo SquareMatrix(n, R)
- commutative?: () -> Boolean
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionsForIdempotents: () -> List Polynomial R
from FramedNonAssociativeAlgebra R
- conditionsForIdempotents: Vector % -> List Polynomial R
- convert: % -> InputForm if R has Finite
from ConvertibleTo InputForm
- convert: % -> Vector R
from FramedModule R
- convert: SquareMatrix(n, R) -> %
converts a SquareMatrix to a LieSquareMatrix
- convert: Vector R -> %
from FramedModule R
- coordinates: % -> Vector R
from FramedModule R
- coordinates: (%, Vector %) -> Vector R
- coordinates: (Vector %, Vector %) -> Matrix R
- coordinates: Vector % -> Matrix R
from FramedModule R
- elt: (%, Integer) -> R
from FramedNonAssociativeAlgebra R
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- index: PositiveInteger -> % if R has Finite
from Finite
- jacobiIdentity?: () -> Boolean
- jordanAdmissible?: () -> Boolean
- jordanAlgebra?: () -> Boolean
- latex: % -> String
from SetCategory
- leftAlternative?: () -> Boolean
- leftDiscriminant: () -> R
from FramedNonAssociativeAlgebra R
- leftDiscriminant: Vector % -> R
- leftMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
- leftNorm: % -> R
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
from FramedNonAssociativeAlgebra R
- leftRecip: % -> Union(%, failed) if R has IntegralDomain
- leftRegularRepresentation: % -> Matrix R
from FramedNonAssociativeAlgebra R
- leftRegularRepresentation: (%, Vector %) -> Matrix R
- leftTrace: % -> R
- leftTraceMatrix: () -> Matrix R
from FramedNonAssociativeAlgebra R
- leftTraceMatrix: Vector % -> Matrix R
- leftUnit: () -> Union(%, failed) if R has IntegralDomain
- leftUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
- lieAdmissible?: () -> Boolean
- lieAlgebra?: () -> Boolean
- lookup: % -> PositiveInteger if R has Finite
from Finite
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra R
- powerAssociative?: () -> Boolean
- rank: () -> PositiveInteger
- recip: % -> Union(%, failed) if R has IntegralDomain
- represents: (Vector R, Vector %) -> %
- represents: Vector R -> %
from FramedModule R
- rightAlternative?: () -> Boolean
- rightDiscriminant: () -> R
from FramedNonAssociativeAlgebra R
- rightDiscriminant: Vector % -> R
- rightMinimalPolynomial: % -> SparseUnivariatePolynomial R if R has IntegralDomain
- rightNorm: % -> R
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRankPolynomial: () -> SparseUnivariatePolynomial Polynomial R if R has Field
from FramedNonAssociativeAlgebra R
- rightRecip: % -> Union(%, failed) if R has IntegralDomain
- rightRegularRepresentation: % -> Matrix R
from FramedNonAssociativeAlgebra R
- rightRegularRepresentation: (%, Vector %) -> Matrix R
- rightTrace: % -> R
- rightTraceMatrix: () -> Matrix R
from FramedNonAssociativeAlgebra R
- rightTraceMatrix: Vector % -> Matrix R
- rightUnit: () -> Union(%, failed) if R has IntegralDomain
- rightUnits: () -> Union(Record(particular: %, basis: List %), failed) if R has IntegralDomain
- sample: %
from AbelianMonoid
- size: () -> NonNegativeInteger if R has Finite
from Finite
- smaller?: (%, %) -> Boolean if R has Finite
from Comparable
- structuralConstants: () -> Vector Matrix R
from FramedNonAssociativeAlgebra R
- structuralConstants: Vector % -> Vector Matrix R
- subtractIfCan: (%, %) -> Union(%, failed)
- unit: () -> Union(%, failed) if R has IntegralDomain
- zero?: % -> Boolean
from AbelianMonoid
BiModule(R, R)
CoercibleTo SquareMatrix(n, R)
Comparable if R has Finite
ConvertibleTo InputForm if R has Finite
FiniteRankNonAssociativeAlgebra R
Module R
unitsKnown if R has IntegralDomain