RealClosedFieldΒΆ

reclos.spad line 258 [edit on github]

RealClosedField provides common access functions for all real closed fields.

0: %

from AbelianMonoid

1: %

from MagmaWithUnit

*: (%, %) -> %

from Magma

*: (%, Fraction Integer) -> %

from RightModule Fraction Integer

*: (%, Integer) -> %

from RightModule Integer

*: (Fraction Integer, %) -> %

from LeftModule Fraction Integer

*: (Integer, %) -> %

from AbelianGroup

*: (NonNegativeInteger, %) -> %

from AbelianMonoid

*: (PositiveInteger, %) -> %

from AbelianSemiGroup

+: (%, %) -> %

from AbelianSemiGroup

-: % -> %

from AbelianGroup

-: (%, %) -> %

from AbelianGroup

/: (%, %) -> %

from Field

<=: (%, %) -> Boolean

from PartialOrder

<: (%, %) -> Boolean

from PartialOrder

=: (%, %) -> Boolean

from BasicType

>=: (%, %) -> Boolean

from PartialOrder

>: (%, %) -> Boolean

from PartialOrder

^: (%, Fraction Integer) -> %

from RadicalCategory

^: (%, Integer) -> %

from DivisionRing

^: (%, NonNegativeInteger) -> %

from MagmaWithUnit

^: (%, PositiveInteger) -> %

from Magma

~=: (%, %) -> Boolean

from BasicType

abs: % -> %

from OrderedRing

allRootsOf: Polynomial % -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

allRootsOf: Polynomial Fraction Integer -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

allRootsOf: Polynomial Integer -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

allRootsOf: SparseUnivariatePolynomial % -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

allRootsOf: SparseUnivariatePolynomial Fraction Integer -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

allRootsOf: SparseUnivariatePolynomial Integer -> List %

allRootsOf(pol) creates all the roots of pol naming each uniquely

annihilate?: (%, %) -> Boolean

from Rng

antiCommutator: (%, %) -> %

from NonAssociativeSemiRng

approximate: (%, %) -> Fraction Integer

approximate(n, p) gives an approximation of n that has precision p

associates?: (%, %) -> Boolean

from EntireRing

associator: (%, %, %) -> %

from NonAssociativeRng

characteristic: () -> NonNegativeInteger

from NonAssociativeRing

coerce: % -> %

from Algebra %

coerce: % -> OutputForm

from CoercibleTo OutputForm

coerce: Fraction Integer -> %

from CoercibleFrom Fraction Integer

coerce: Integer -> %

from NonAssociativeRing

commutator: (%, %) -> %

from NonAssociativeRng

divide: (%, %) -> Record(quotient: %, remainder: %)

from EuclideanDomain

euclideanSize: % -> NonNegativeInteger

from EuclideanDomain

expressIdealMember: (List %, %) -> Union(List %, failed)

from PrincipalIdealDomain

exquo: (%, %) -> Union(%, failed)

from EntireRing

extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)

from EuclideanDomain

extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)

from EuclideanDomain

factor: % -> Factored %

from UniqueFactorizationDomain

gcd: (%, %) -> %

from GcdDomain

gcd: List % -> %

from GcdDomain

gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %

from GcdDomain

inv: % -> %

from DivisionRing

latex: % -> String

from SetCategory

lcm: (%, %) -> %

from GcdDomain

lcm: List % -> %

from GcdDomain

lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)

from LeftOreRing

leftPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

leftPower: (%, PositiveInteger) -> %

from Magma

leftRecip: % -> Union(%, failed)

from MagmaWithUnit

mainDefiningPolynomial: % -> Union(SparseUnivariatePolynomial %, failed)

mainDefiningPolynomial(x) is the defining polynomial for the main algebraic quantity of x

mainForm: % -> Union(OutputForm, failed)

mainForm(x) is the main algebraic quantity name of x

mainValue: % -> Union(SparseUnivariatePolynomial %, failed)

mainValue(x) is the expression of x in terms of SparseUnivariatePolynomial(\%)

max: (%, %) -> %

from OrderedSet

min: (%, %) -> %

from OrderedSet

multiEuclidean: (List %, %) -> Union(List %, failed)

from EuclideanDomain

negative?: % -> Boolean

from OrderedRing

nthRoot: (%, Integer) -> %

from RadicalCategory

one?: % -> Boolean

from MagmaWithUnit

opposite?: (%, %) -> Boolean

from AbelianMonoid

plenaryPower: (%, PositiveInteger) -> %

from NonAssociativeAlgebra Integer

positive?: % -> Boolean

from OrderedRing

prime?: % -> Boolean

from UniqueFactorizationDomain

principalIdeal: List % -> Record(coef: List %, generator: %)

from PrincipalIdealDomain

quo: (%, %) -> %

from EuclideanDomain

recip: % -> Union(%, failed)

from MagmaWithUnit

rem: (%, %) -> %

from EuclideanDomain

rename!: (%, OutputForm) -> %

rename!(x, name) changes the way x is printed

rename: (%, OutputForm) -> %

rename(x, name) gives a new number that prints as name

retract: % -> Fraction Integer

from RetractableTo Fraction Integer

retract: % -> Integer

from RetractableTo Integer

retractIfCan: % -> Union(Fraction Integer, failed)

from RetractableTo Fraction Integer

retractIfCan: % -> Union(Integer, failed)

from RetractableTo Integer

rightPower: (%, NonNegativeInteger) -> %

from MagmaWithUnit

rightPower: (%, PositiveInteger) -> %

from Magma

rightRecip: % -> Union(%, failed)

from MagmaWithUnit

rootOf: (SparseUnivariatePolynomial %, PositiveInteger) -> Union(%, failed)

rootOf(pol, n) creates the nth root for the order of pol and gives it unique name

rootOf: (SparseUnivariatePolynomial %, PositiveInteger, OutputForm) -> Union(%, failed)

rootOf(pol, n, name) creates the nth root for the order of pol and names it name

sample: %

from AbelianMonoid

sign: % -> Integer

from OrderedRing

sizeLess?: (%, %) -> Boolean

from EuclideanDomain

smaller?: (%, %) -> Boolean

from Comparable

sqrt: % -> %

sqrt(x) is x ^ (1/2)

sqrt: (%, PositiveInteger) -> %

sqrt(x, n) is x ^ (1/n)

sqrt: Fraction Integer -> %

sqrt(x) is x ^ (1/2)

sqrt: Integer -> %

sqrt(x) is x ^ (1/2)

squareFree: % -> Factored %

from UniqueFactorizationDomain

squareFreePart: % -> %

from UniqueFactorizationDomain

subtractIfCan: (%, %) -> Union(%, failed)

from CancellationAbelianMonoid

unit?: % -> Boolean

from EntireRing

unitCanonical: % -> %

from EntireRing

unitNormal: % -> Record(unit: %, canonical: %, associate: %)

from EntireRing

zero?: % -> Boolean

from AbelianMonoid

AbelianGroup

AbelianMonoid

AbelianSemiGroup

Algebra %

Algebra Fraction Integer

Algebra Integer

BasicType

BiModule(%, %)

BiModule(Fraction Integer, Fraction Integer)

BiModule(Integer, Integer)

CancellationAbelianMonoid

canonicalsClosed

canonicalUnitNormal

CharacteristicZero

CoercibleFrom Fraction Integer

CoercibleFrom Integer

CoercibleTo OutputForm

CommutativeRing

CommutativeStar

Comparable

DivisionRing

EntireRing

EuclideanDomain

Field

FullyRetractableTo Fraction Integer

GcdDomain

IntegralDomain

LeftModule %

LeftModule Fraction Integer

LeftModule Integer

LeftOreRing

Magma

MagmaWithUnit

Module %

Module Fraction Integer

Module Integer

Monoid

NonAssociativeAlgebra %

NonAssociativeAlgebra Fraction Integer

NonAssociativeAlgebra Integer

NonAssociativeRing

NonAssociativeRng

NonAssociativeSemiRing

NonAssociativeSemiRng

noZeroDivisors

OrderedAbelianGroup

OrderedAbelianMonoid

OrderedAbelianSemiGroup

OrderedCancellationAbelianMonoid

OrderedRing

OrderedSet

PartialOrder

PrincipalIdealDomain

RadicalCategory

RetractableTo Fraction Integer

RetractableTo Integer

RightModule %

RightModule Fraction Integer

RightModule Integer

Ring

Rng

SemiGroup

SemiRing

SemiRng

SetCategory

TwoSidedRecip

UniqueFactorizationDomain

unitsKnown