BalancedPAdicRational p¶
padic.spad line 559 [edit on github]
p: Integer
Stream-based implementation of Qp:
numbers are represented as sum(i
= k
.., a[i
] * p^i), where the a[i
] lie in -(p
- 1)/2
, …, (p
- 1)/2
.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, BalancedPAdicInteger p) -> %
from RightModule BalancedPAdicInteger p
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (%, Integer) -> % if BalancedPAdicInteger p has LinearlyExplicitOver Integer
from RightModule Integer
- *: (BalancedPAdicInteger p, %) -> %
from LeftModule BalancedPAdicInteger p
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (BalancedPAdicInteger p, BalancedPAdicInteger p) -> %
- <=: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
from PartialOrder
- <: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
from PartialOrder
- >=: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
from PartialOrder
- >: (%, %) -> Boolean if BalancedPAdicInteger p has OrderedSet
from PartialOrder
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if BalancedPAdicInteger p has OrderedIntegralDomain
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
approximate: (%, Integer) -> Fraction Integer
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- ceiling: % -> BalancedPAdicInteger p if BalancedPAdicInteger p has IntegerNumberSystem
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if BalancedPAdicInteger p has CharacteristicNonZero or % has CharacteristicNonZero and BalancedPAdicInteger p has PolynomialFactorizationExplicit
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: BalancedPAdicInteger p -> %
- coerce: Fraction Integer -> %
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Symbol -> % if BalancedPAdicInteger p has RetractableTo Symbol
from CoercibleFrom Symbol
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and BalancedPAdicInteger p has PolynomialFactorizationExplicit
continuedFraction: % -> ContinuedFraction Fraction Integer
- convert: % -> DoubleFloat if BalancedPAdicInteger p has RealConstant
from ConvertibleTo DoubleFloat
- convert: % -> Float if BalancedPAdicInteger p has RealConstant
from ConvertibleTo Float
- convert: % -> InputForm if BalancedPAdicInteger p has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if BalancedPAdicInteger p has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if BalancedPAdicInteger p has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: % -> % if BalancedPAdicInteger p has DifferentialRing
from DifferentialRing
- D: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p) -> %
- D: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p, NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if BalancedPAdicInteger p has DifferentialRing
from DifferentialRing
- D: (%, Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- denom: % -> BalancedPAdicInteger p
- denominator: % -> %
- differentiate: % -> % if BalancedPAdicInteger p has DifferentialRing
from DifferentialRing
- differentiate: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p) -> %
- differentiate: (%, BalancedPAdicInteger p -> BalancedPAdicInteger p, NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if BalancedPAdicInteger p has DifferentialRing
from DifferentialRing
- differentiate: (%, Symbol) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if BalancedPAdicInteger p has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Eltable(BalancedPAdicInteger p, BalancedPAdicInteger p)
from Eltable(BalancedPAdicInteger p, %)
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, BalancedPAdicInteger p, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
from InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p)
- eval: (%, Equation BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
from Evalable BalancedPAdicInteger p
- eval: (%, List BalancedPAdicInteger p, List BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
from InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p)
- eval: (%, List Equation BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
from Evalable BalancedPAdicInteger p
- eval: (%, List Symbol, List BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
from InnerEvalable(Symbol, BalancedPAdicInteger p)
- eval: (%, Symbol, BalancedPAdicInteger p) -> % if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
from InnerEvalable(Symbol, BalancedPAdicInteger p)
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- floor: % -> BalancedPAdicInteger p if BalancedPAdicInteger p has IntegerNumberSystem
- fractionPart: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- init: % if BalancedPAdicInteger p has StepThrough
from StepThrough
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (BalancedPAdicInteger p -> BalancedPAdicInteger p, %) -> %
- max: (%, %) -> % if BalancedPAdicInteger p has OrderedSet
from OrderedSet
- min: (%, %) -> % if BalancedPAdicInteger p has OrderedSet
from OrderedSet
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean if BalancedPAdicInteger p has OrderedIntegralDomain
from OrderedRing
- nextItem: % -> Union(%, failed) if BalancedPAdicInteger p has StepThrough
from StepThrough
- numer: % -> BalancedPAdicInteger p
- numerator: % -> %
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if BalancedPAdicInteger p has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if BalancedPAdicInteger p has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean if BalancedPAdicInteger p has OrderedIntegralDomain
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix BalancedPAdicInteger p, vec: Vector BalancedPAdicInteger p)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if BalancedPAdicInteger p has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix BalancedPAdicInteger p
- reducedSystem: Matrix % -> Matrix Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
- rem: (%, %) -> %
from EuclideanDomain
removeZeroes: % -> %
removeZeroes: (Integer, %) -> %
- retract: % -> BalancedPAdicInteger p
- retract: % -> Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if BalancedPAdicInteger p has RetractableTo Integer
from RetractableTo Integer
- retract: % -> Symbol if BalancedPAdicInteger p has RetractableTo Symbol
from RetractableTo Symbol
- retractIfCan: % -> Union(BalancedPAdicInteger p, failed)
- retractIfCan: % -> Union(Fraction Integer, failed) if BalancedPAdicInteger p has RetractableTo Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if BalancedPAdicInteger p has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Symbol, failed) if BalancedPAdicInteger p has RetractableTo Symbol
from RetractableTo Symbol
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sign: % -> Integer if BalancedPAdicInteger p has OrderedIntegralDomain
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean if BalancedPAdicInteger p has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- squareFree: % -> Factored %
- squareFreePart: % -> %
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if BalancedPAdicInteger p has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
Algebra BalancedPAdicInteger p
BiModule(%, %)
BiModule(BalancedPAdicInteger p, BalancedPAdicInteger p)
BiModule(Fraction Integer, Fraction Integer)
CharacteristicNonZero if BalancedPAdicInteger p has CharacteristicNonZero
CoercibleFrom BalancedPAdicInteger p
CoercibleFrom Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
CoercibleFrom Integer if BalancedPAdicInteger p has RetractableTo Integer
CoercibleFrom Symbol if BalancedPAdicInteger p has RetractableTo Symbol
Comparable if BalancedPAdicInteger p has Comparable
ConvertibleTo DoubleFloat if BalancedPAdicInteger p has RealConstant
ConvertibleTo Float if BalancedPAdicInteger p has RealConstant
ConvertibleTo InputForm if BalancedPAdicInteger p has ConvertibleTo InputForm
ConvertibleTo Pattern Float if BalancedPAdicInteger p has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if BalancedPAdicInteger p has ConvertibleTo Pattern Integer
DifferentialExtension BalancedPAdicInteger p
DifferentialRing if BalancedPAdicInteger p has DifferentialRing
Eltable(BalancedPAdicInteger p, %) if BalancedPAdicInteger p has Eltable(BalancedPAdicInteger p, BalancedPAdicInteger p)
Evalable BalancedPAdicInteger p if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
FullyEvalableOver BalancedPAdicInteger p
FullyLinearlyExplicitOver BalancedPAdicInteger p
FullyPatternMatchable BalancedPAdicInteger p
InnerEvalable(BalancedPAdicInteger p, BalancedPAdicInteger p) if BalancedPAdicInteger p has Evalable BalancedPAdicInteger p
InnerEvalable(Symbol, BalancedPAdicInteger p) if BalancedPAdicInteger p has InnerEvalable(Symbol, BalancedPAdicInteger p)
LeftModule BalancedPAdicInteger p
LinearlyExplicitOver BalancedPAdicInteger p
LinearlyExplicitOver Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
Module %
NonAssociativeAlgebra BalancedPAdicInteger p
NonAssociativeAlgebra Fraction Integer
OrderedAbelianGroup if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedAbelianMonoid if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedAbelianSemiGroup if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedCancellationAbelianMonoid if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedIntegralDomain if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedRing if BalancedPAdicInteger p has OrderedIntegralDomain
OrderedSet if BalancedPAdicInteger p has OrderedSet
PartialDifferentialRing Symbol if BalancedPAdicInteger p has PartialDifferentialRing Symbol
PartialOrder if BalancedPAdicInteger p has OrderedSet
Patternable BalancedPAdicInteger p
PatternMatchable Float if BalancedPAdicInteger p has PatternMatchable Float
PatternMatchable Integer if BalancedPAdicInteger p has PatternMatchable Integer
PolynomialFactorizationExplicit if BalancedPAdicInteger p has PolynomialFactorizationExplicit
QuotientFieldCategory BalancedPAdicInteger p
RealConstant if BalancedPAdicInteger p has RealConstant
RetractableTo BalancedPAdicInteger p
RetractableTo Fraction Integer if BalancedPAdicInteger p has RetractableTo Integer
RetractableTo Integer if BalancedPAdicInteger p has RetractableTo Integer
RetractableTo Symbol if BalancedPAdicInteger p has RetractableTo Symbol
RightModule BalancedPAdicInteger p
RightModule Integer if BalancedPAdicInteger p has LinearlyExplicitOver Integer
StepThrough if BalancedPAdicInteger p has StepThrough