ExponentialOfUnivariatePuiseuxSeries(FE, var, cen)ΒΆ
expexpan.spad line 1 [edit on github]
FE: Join(Field, Comparable)
var: Symbol
cen: FE
ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form exp(f(x))
, where f(x)
is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity, with functions which tend more rapidly to zero or infinity considered to be larger. Thus, if order(f(x)) < order(g(x))
, i.e. the first non-zero term of f(x)
has lower degree than the first non-zero term of g(x)
, then exp(f(x)) > exp(g(x))
. If order(f(x)) = order(g(x))
, then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, FE) -> %
from RightModule FE
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (FE, %) -> %
from LeftModule FE
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, %) -> %
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- acos: % -> %
- acosh: % -> %
- acot: % -> %
- acoth: % -> %
- acsc: % -> %
- acsch: % -> %
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Fraction Integer) -> FE if FE has coerce: Symbol -> FE and FE has ^: (FE, Fraction Integer) -> FE
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- asec: % -> %
- asech: % -> %
- asin: % -> %
- asinh: % -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> %
- atanh: % -> %
- center: % -> FE
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if FE has CharacteristicNonZero
- coefficient: (%, Fraction Integer) -> FE
from AbelianMonoidRing(FE, Fraction Integer)
- coerce: % -> %
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: FE -> %
from Algebra FE
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
- construct: List Record(k: Fraction Integer, c: FE) -> %
from IndexedProductCategory(FE, Fraction Integer)
- constructOrdered: List Record(k: Fraction Integer, c: FE) -> %
from IndexedProductCategory(FE, Fraction Integer)
- cos: % -> %
- cosh: % -> %
- cot: % -> %
- coth: % -> %
- csc: % -> %
- csch: % -> %
- D: % -> % if FE has *: (Fraction Integer, FE) -> FE
from DifferentialRing
- D: (%, List Symbol) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE
from DifferentialRing
- D: (%, Symbol) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- degree: % -> Fraction Integer
from PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
- differentiate: % -> % if FE has *: (Fraction Integer, FE) -> FE
from DifferentialRing
- differentiate: (%, List Symbol) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE
from DifferentialRing
- differentiate: (%, Symbol) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction Integer) -> FE
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- eval: (%, FE) -> Stream FE if FE has ^: (FE, Fraction Integer) -> FE
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- exp: % -> %
- exponent: % -> UnivariatePuiseuxSeries(FE, var, cen)
exponent(exp(f(x)))
returnsf(x)
- exponential: UnivariatePuiseuxSeries(FE, var, cen) -> %
exponential(f(x))
returnsexp(f(x))
. Note: the function does NOT check thatf(x)
has no non-negative terms.
- exponentialOrder: % -> Fraction Integer
exponentialOrder(exp(c * x ^(-n) + ...))
returns-n
. exponentialOrder(0) returns0
.
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- integrate: % -> %
from UnivariateSeriesWithRationalExponents(FE, Fraction Integer)
- integrate: (%, Symbol) -> % if FE has integrate: (FE, Symbol) -> FE and FE has variables: FE -> List Symbol
from UnivariateSeriesWithRationalExponents(FE, Fraction Integer)
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leadingCoefficient: % -> FE
from PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Fraction Integer
from IndexedProductCategory(FE, Fraction Integer)
- leadingTerm: % -> Record(k: Fraction Integer, c: FE)
from IndexedProductCategory(FE, Fraction Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- log: % -> %
- map: (FE -> FE, %) -> %
from IndexedProductCategory(FE, Fraction Integer)
- max: (%, %) -> %
from OrderedSet
- min: (%, %) -> %
from OrderedSet
- monomial?: % -> Boolean
from IndexedProductCategory(FE, Fraction Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- multiplyExponents: (%, Fraction Integer) -> %
from UnivariatePuiseuxSeriesCategory FE
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Fraction Integer
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- order: (%, Fraction Integer) -> Fraction Integer
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- pi: () -> %
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- pole?: % -> Boolean
from PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(FE, Fraction Integer)
- rem: (%, %) -> %
from EuclideanDomain
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> %
- sech: % -> %
- series: (NonNegativeInteger, Stream Record(k: Fraction Integer, c: FE)) -> %
from UnivariatePuiseuxSeriesCategory FE
- sin: % -> %
- sinh: % -> %
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tan: % -> %
- tanh: % -> %
- terms: % -> Stream Record(k: Fraction Integer, c: FE)
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- truncate: (%, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- truncate: (%, Fraction Integer, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(FE, Fraction Integer)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(FE, Fraction Integer)
Algebra %
Algebra FE
ArcTrigonometricFunctionCategory
BiModule(%, %)
BiModule(FE, FE)
BiModule(Fraction Integer, Fraction Integer)
CharacteristicNonZero if FE has CharacteristicNonZero
CharacteristicZero if FE has CharacteristicZero
DifferentialRing if FE has *: (Fraction Integer, FE) -> FE
Eltable(%, %)
IndexedProductCategory(FE, Fraction Integer)
LeftModule FE
Module %
Module FE
NonAssociativeAlgebra Fraction Integer
PartialDifferentialRing Symbol if FE has *: (Fraction Integer, FE) -> FE and FE has PartialDifferentialRing Symbol
PowerSeriesCategory(FE, Fraction Integer, SingletonAsOrderedSet)
RightModule FE
TranscendentalFunctionCategory
UnivariatePowerSeriesCategory(FE, Fraction Integer)
UnivariatePuiseuxSeriesCategory FE