FiniteFieldExtension(GF, n)ΒΆ
ffdoms.spad line 1545 [edit on github]
FiniteFieldExtensionByPolynomial(GF, n) implements an extension of the finite field GF of degree n generated by the extension polynomial constructed by createIrreduciblePoly from FiniteFieldPolynomialPackage.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> %
- from RightModule Fraction Integer 
- *: (%, GF) -> %
- from RightModule GF 
- *: (Fraction Integer, %) -> %
- from LeftModule Fraction Integer 
- *: (GF, %) -> %
- from LeftModule GF 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, %) -> %
- from Field 
- /: (%, GF) -> %
- from ExtensionField GF 
- ^: (%, Integer) -> %
- from DivisionRing 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- algebraic?: % -> Boolean
- from ExtensionField GF 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- basis: () -> Vector %
- from FramedModule GF 
- basis: PositiveInteger -> Vector %
- from FiniteAlgebraicExtensionField GF 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- characteristicPolynomial: % -> SparseUnivariatePolynomial GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- charthRoot: % -> %
- from FiniteFieldCategory 
- charthRoot: % -> Union(%, failed)
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> %
- coerce: GF -> %
- from CoercibleFrom GF 
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- conditionP: Matrix % -> Union(Vector %, failed)
- convert: % -> InputForm
- from ConvertibleTo InputForm 
- convert: % -> Vector GF
- from FramedModule GF 
- convert: Vector GF -> %
- from FramedModule GF 
- coordinates: % -> Vector GF
- from FramedModule GF 
- coordinates: (%, Vector %) -> Vector GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- coordinates: (Vector %, Vector %) -> Matrix GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- coordinates: Vector % -> Matrix GF
- from FramedModule GF 
- createNormalElement: () -> %
- from FiniteAlgebraicExtensionField GF 
- createPrimitiveElement: () -> %
- from FiniteFieldCategory 
- D: % -> %
- from DifferentialRing 
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- definingPolynomial: () -> SparseUnivariatePolynomial GF
- from FiniteAlgebraicExtensionField GF 
- degree: % -> OnePointCompletion PositiveInteger
- from ExtensionField GF 
- degree: % -> PositiveInteger
- from FiniteAlgebraicExtensionField GF 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- discreteLog: % -> NonNegativeInteger
- from FiniteFieldCategory 
- discreteLog: (%, %) -> Union(NonNegativeInteger, failed)
- discriminant: () -> GF
- from FramedAlgebra(GF, SparseUnivariatePolynomial GF) 
- discriminant: Vector % -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- extensionDegree: () -> OnePointCompletion PositiveInteger
- from ExtensionField GF 
- extensionDegree: () -> PositiveInteger
- from FiniteAlgebraicExtensionField GF 
- factorsOfCyclicGroupSize: () -> List Record(factor: Integer, exponent: NonNegativeInteger)
- from FiniteFieldCategory 
- Frobenius: % -> %
- from ExtensionField GF 
- Frobenius: (%, NonNegativeInteger) -> %
- from ExtensionField GF 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- generator: () -> %
- from FiniteAlgebraicExtensionField GF 
- hash: % -> SingleInteger
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState
- from Hashable 
- index: PositiveInteger -> %
- from Finite 
- inGroundField?: % -> Boolean
- from ExtensionField GF 
- init: %
- from StepThrough 
- inv: % -> %
- from DivisionRing 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearAssociatedExp: (%, SparseUnivariatePolynomial GF) -> %
- from FiniteAlgebraicExtensionField GF 
- linearAssociatedLog: % -> SparseUnivariatePolynomial GF
- from FiniteAlgebraicExtensionField GF 
- linearAssociatedLog: (%, %) -> Union(SparseUnivariatePolynomial GF, failed)
- from FiniteAlgebraicExtensionField GF 
- lookup: % -> PositiveInteger
- from Finite 
- minimalPolynomial: % -> SparseUnivariatePolynomial GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- minimalPolynomial: (%, PositiveInteger) -> SparseUnivariatePolynomial %
- from FiniteAlgebraicExtensionField GF 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- nextItem: % -> Union(%, failed)
- from StepThrough 
- norm: % -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- norm: (%, PositiveInteger) -> %
- from FiniteAlgebraicExtensionField GF 
- normal?: % -> Boolean
- from FiniteAlgebraicExtensionField GF 
- normalElement: () -> %
- from FiniteAlgebraicExtensionField GF 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- order: % -> OnePointCompletion PositiveInteger
- order: % -> PositiveInteger
- from FiniteFieldCategory 
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- primeFrobenius: % -> %
- primeFrobenius: (%, NonNegativeInteger) -> %
- primitive?: % -> Boolean
- from FiniteFieldCategory 
- primitiveElement: () -> %
- from FiniteFieldCategory 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- rank: () -> PositiveInteger
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- regularRepresentation: % -> Matrix GF
- from FramedAlgebra(GF, SparseUnivariatePolynomial GF) 
- regularRepresentation: (%, Vector %) -> Matrix GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- rem: (%, %) -> %
- from EuclideanDomain 
- representationType: () -> Union(prime, polynomial, normal, cyclic)
- from FiniteFieldCategory 
- represents: (Vector GF, Vector %) -> %
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- represents: Vector GF -> %
- from FramedModule GF 
- retract: % -> GF
- from RetractableTo GF 
- retractIfCan: % -> Union(GF, failed)
- from RetractableTo GF 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- size: () -> NonNegativeInteger
- from Finite 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed)
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- tableForDiscreteLogarithm: Integer -> Table(PositiveInteger, NonNegativeInteger)
- from FiniteFieldCategory 
- trace: % -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- trace: (%, PositiveInteger) -> %
- from FiniteAlgebraicExtensionField GF 
- traceMatrix: () -> Matrix GF
- from FramedAlgebra(GF, SparseUnivariatePolynomial GF) 
- traceMatrix: Vector % -> Matrix GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF) 
- transcendenceDegree: () -> NonNegativeInteger
- from ExtensionField GF 
- transcendent?: % -> Boolean
- from ExtensionField GF 
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
Algebra GF
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
BiModule(GF, GF)
CharacteristicZero if GF has CharacteristicZero
FiniteAlgebraicExtensionField GF
FiniteRankAlgebra(GF, SparseUnivariatePolynomial GF)
FramedAlgebra(GF, SparseUnivariatePolynomial GF)
FramedModule GF
LeftModule GF
Module %
Module GF
NonAssociativeAlgebra Fraction Integer
PolynomialFactorizationExplicit
RightModule GF