MachineFloat¶
fortmac.spad line 51 [edit on github]
A domain which models the floating point representation used by machines in the AXIOM-NAG link.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> %
from RightModule Fraction Integer
- *: (Fraction Integer, %) -> %
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> %
from Field
- /: (%, Integer) -> %
from FloatingPointSystem
- <=: (%, %) -> Boolean
from PartialOrder
- <: (%, %) -> Boolean
from PartialOrder
- >=: (%, %) -> Boolean
from PartialOrder
- >: (%, %) -> Boolean
from PartialOrder
- ^: (%, Fraction Integer) -> %
from RadicalCategory
- ^: (%, Integer) -> %
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> %
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- base: () -> PositiveInteger
base()
returns the base of the model
- base: PositiveInteger -> PositiveInteger
base(b)
sets the base of the model tob
- bits: () -> PositiveInteger
from FloatingPointSystem
- ceiling: % -> %
from RealNumberSystem
- changeBase: (Integer, Integer, PositiveInteger) -> %
changeBase(exp, man, base)
is undocumented.
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- coerce: % -> Float
coerce(u)
transforms a MachineFloat to a standard Float- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Float -> %
from CoercibleFrom Float
- coerce: Fraction Integer -> %
- coerce: Integer -> %
from NonAssociativeRing
- coerce: MachineInteger -> %
coerce(u)
transforms a MachineInteger into a MachineFloat
- commutator: (%, %) -> %
from NonAssociativeRng
- convert: % -> DoubleFloat
from ConvertibleTo DoubleFloat
- convert: % -> Float
from ConvertibleTo Float
- convert: % -> Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> String
from ConvertibleTo String
- digits: () -> PositiveInteger
from FloatingPointSystem
- divide: (%, %) -> Record(quotient: %, remainder: %)
from EuclideanDomain
- euclideanSize: % -> NonNegativeInteger
from EuclideanDomain
- exponent: % -> Integer
exponent(u)
returns the exponent ofu
- expressIdealMember: (List %, %) -> Union(List %, failed)
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed)
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
from EuclideanDomain
- float: (Integer, Integer) -> %
from FloatingPointSystem
- float: (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
- floor: % -> %
from RealNumberSystem
- fractionPart: % -> %
from RealNumberSystem
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
from GcdDomain
- inv: % -> %
from DivisionRing
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
from LeftOreRing
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- mantissa: % -> Integer
mantissa(u)
returns the mantissa ofu
- max: (%, %) -> %
from OrderedSet
- max: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- maximumExponent: () -> Integer
maximumExponent()
returns the maximum exponent in the model
- min: (%, %) -> %
from OrderedSet
- min: () -> % if % hasn’t arbitraryExponent and % hasn’t arbitraryPrecision
from FloatingPointSystem
- minimumExponent: () -> Integer
minimumExponent()
returns the minimum exponent in the model
- multiEuclidean: (List %, %) -> Union(List %, failed)
from EuclideanDomain
- negative?: % -> Boolean
from OrderedRing
- norm: % -> %
from RealNumberSystem
- nthRoot: (%, Integer) -> %
from RadicalCategory
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from FloatingPointSystem
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable Float
- plenaryPower: (%, PositiveInteger) -> %
from NonAssociativeAlgebra %
- positive?: % -> Boolean
from OrderedRing
- precision: () -> PositiveInteger
precision()
returns the number of digits in the model
- precision: PositiveInteger -> PositiveInteger
precision(p)
sets the number of digits in the model top
- principalIdeal: List % -> Record(coef: List %, generator: %)
from PrincipalIdealDomain
- quo: (%, %) -> %
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- rem: (%, %) -> %
from EuclideanDomain
- retract: % -> Float
from RetractableTo Float
- retract: % -> Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer
from RetractableTo Integer
- retractIfCan: % -> Union(Float, failed)
from RetractableTo Float
- retractIfCan: % -> Union(Fraction Integer, failed)
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed)
from RetractableTo Integer
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- round: % -> %
from RealNumberSystem
- sample: %
from AbelianMonoid
- sign: % -> Integer
from OrderedRing
- sizeLess?: (%, %) -> Boolean
from EuclideanDomain
- smaller?: (%, %) -> Boolean
from Comparable
- sqrt: % -> %
from RadicalCategory
- squareFree: % -> Factored %
- squareFreePart: % -> %
- subtractIfCan: (%, %) -> Union(%, failed)
- toString: % -> String
from FloatingPointSystem
- toString: (%, NonNegativeInteger) -> String
from FloatingPointSystem
- truncate: % -> %
from RealNumberSystem
- unit?: % -> Boolean
from EntireRing
- unitCanonical: % -> %
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
from EntireRing
- wholePart: % -> Integer
from RealNumberSystem
- zero?: % -> Boolean
from AbelianMonoid
Algebra %
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer)
CoercibleFrom Fraction Integer
Module %
NonAssociativeAlgebra Fraction Integer
OrderedCancellationAbelianMonoid