MachineIntegerΒΆ
fortmac.spad line 1 [edit on github]
A domain which models the integer representation used by machines in the AXIOM-NAG link.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- <=: (%, %) -> Boolean
- from PartialOrder 
- <: (%, %) -> Boolean
- from PartialOrder 
- >=: (%, %) -> Boolean
- from PartialOrder 
- >: (%, %) -> Boolean
- from PartialOrder 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- abs: % -> %
- from OrderedRing 
- addmod: (%, %, %) -> %
- from IntegerNumberSystem 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- base: () -> %
- from IntegerNumberSystem 
- binomial: (%, %) -> %
- bit?: (%, %) -> Boolean
- from IntegerNumberSystem 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- coerce: % -> %
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Expression Integer -> Expression %
- coerce(x)returns- xwith coefficients in the domain
- coerce: Integer -> %
- from NonAssociativeRing 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- convert: % -> DoubleFloat
- from ConvertibleTo DoubleFloat 
- convert: % -> Float
- from ConvertibleTo Float 
- convert: % -> InputForm
- from ConvertibleTo InputForm 
- convert: % -> Integer
- from ConvertibleTo Integer 
- convert: % -> Pattern Integer
- from ConvertibleTo Pattern Integer 
- copy: % -> %
- from IntegerNumberSystem 
- D: % -> %
- from DifferentialRing 
- D: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- dec: % -> %
- from IntegerNumberSystem 
- differentiate: % -> %
- from DifferentialRing 
- differentiate: (%, NonNegativeInteger) -> %
- from DifferentialRing 
- divide: (%, %) -> Record(quotient: %, remainder: %)
- from EuclideanDomain 
- euclideanSize: % -> NonNegativeInteger
- from EuclideanDomain 
- even?: % -> Boolean
- from IntegerNumberSystem 
- expressIdealMember: (List %, %) -> Union(List %, failed)
- from PrincipalIdealDomain 
- exquo: (%, %) -> Union(%, failed)
- from EntireRing 
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %)
- from EuclideanDomain 
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed)
- from EuclideanDomain 
- factorial: % -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial %
- from GcdDomain 
- inc: % -> %
- from IntegerNumberSystem 
- init: %
- from StepThrough 
- invmod: (%, %) -> %
- from IntegerNumberSystem 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %)
- from LeftOreRing 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- length: % -> %
- from IntegerNumberSystem 
- mask: % -> %
- from IntegerNumberSystem 
- max: (%, %) -> %
- from OrderedSet 
- maxint: () -> PositiveInteger
- maxint()returns the maximum integer in the model
- maxint: PositiveInteger -> PositiveInteger
- maxint(u)sets the maximum integer in the model to- u
- min: (%, %) -> %
- from OrderedSet 
- mulmod: (%, %, %) -> %
- from IntegerNumberSystem 
- multiEuclidean: (List %, %) -> Union(List %, failed)
- from EuclideanDomain 
- negative?: % -> Boolean
- from OrderedRing 
- nextItem: % -> Union(%, failed)
- from StepThrough 
- odd?: % -> Boolean
- from IntegerNumberSystem 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
- from PatternMatchable Integer 
- permutation: (%, %) -> %
- plenaryPower: (%, PositiveInteger) -> %
- from NonAssociativeAlgebra % 
- positive?: % -> Boolean
- from OrderedRing 
- positiveRemainder: (%, %) -> %
- from IntegerNumberSystem 
- powmod: (%, %, %) -> %
- from IntegerNumberSystem 
- principalIdeal: List % -> Record(coef: List %, generator: %)
- from PrincipalIdealDomain 
- quo: (%, %) -> %
- from EuclideanDomain 
- random: % -> %
- from IntegerNumberSystem 
- rational?: % -> Boolean
- from IntegerNumberSystem 
- rational: % -> Fraction Integer
- from IntegerNumberSystem 
- rationalIfCan: % -> Union(Fraction Integer, failed)
- from IntegerNumberSystem 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- rem: (%, %) -> %
- from EuclideanDomain 
- retract: % -> Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(Integer, failed)
- from RetractableTo Integer 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- shift: (%, %) -> %
- from IntegerNumberSystem 
- sign: % -> Integer
- from OrderedRing 
- sizeLess?: (%, %) -> Boolean
- from EuclideanDomain 
- smaller?: (%, %) -> Boolean
- from Comparable 
- squareFree: % -> Factored %
- squareFreePart: % -> %
- submod: (%, %, %) -> %
- from IntegerNumberSystem 
- subtractIfCan: (%, %) -> Union(%, failed)
- symmetricRemainder: (%, %) -> %
- from IntegerNumberSystem 
- unit?: % -> Boolean
- from EntireRing 
- unitCanonical: % -> %
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %)
- from EntireRing 
- zero?: % -> Boolean
- from AbelianMonoid 
Algebra %
BiModule(%, %)
Module %