SparseMultivariatePolynomialExpressions RΒΆ
ssolve.spad line 22 [edit on github]
R: Ring
undocumented
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- ^: (%, %) -> % if R has TranscendentalFunctionCategory
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- acos: % -> % if R has TranscendentalFunctionCategory
- acosh: % -> % if R has TranscendentalFunctionCategory
- acot: % -> % if R has TranscendentalFunctionCategory
- acoth: % -> % if R has TranscendentalFunctionCategory
- acsc: % -> % if R has TranscendentalFunctionCategory
- acsch: % -> % if R has TranscendentalFunctionCategory
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- asec: % -> % if R has TranscendentalFunctionCategory
- asech: % -> % if R has TranscendentalFunctionCategory
- asin: % -> % if R has TranscendentalFunctionCategory
- asinh: % -> % if R has TranscendentalFunctionCategory
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- atan: % -> % if R has TranscendentalFunctionCategory
- atanh: % -> % if R has TranscendentalFunctionCategory
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- coefficient: (%, IndexedExponents NonNegativeInteger) -> R
from AbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- coefficient: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- coefficient: (%, NonNegativeInteger, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents NonNegativeInteger)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: NonNegativeInteger -> %
- coerce: R -> %
from Algebra R
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- constructOrdered: List Record(k: IndexedExponents NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- content: (%, NonNegativeInteger) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- convert: % -> InputForm if R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and NonNegativeInteger has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and NonNegativeInteger has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- cos: % -> % if R has TranscendentalFunctionCategory
- cosh: % -> % if R has TranscendentalFunctionCategory
- cot: % -> % if R has TranscendentalFunctionCategory
- coth: % -> % if R has TranscendentalFunctionCategory
- csc: % -> % if R has TranscendentalFunctionCategory
- csch: % -> % if R has TranscendentalFunctionCategory
- D: (%, List NonNegativeInteger) -> %
- D: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
- D: (%, NonNegativeInteger) -> %
- D: (%, NonNegativeInteger, NonNegativeInteger) -> %
- degree: % -> IndexedExponents NonNegativeInteger
from AbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- degree: (%, List NonNegativeInteger) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- degree: (%, NonNegativeInteger) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- differentiate: (%, List NonNegativeInteger) -> %
- differentiate: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
- differentiate: (%, NonNegativeInteger) -> %
- differentiate: (%, NonNegativeInteger, NonNegativeInteger) -> %
- discriminant: (%, NonNegativeInteger) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List NonNegativeInteger, List %) -> %
from InnerEvalable(NonNegativeInteger, %)
- eval: (%, List NonNegativeInteger, List R) -> %
from InnerEvalable(NonNegativeInteger, R)
- eval: (%, NonNegativeInteger, %) -> %
from InnerEvalable(NonNegativeInteger, %)
- eval: (%, NonNegativeInteger, R) -> %
from InnerEvalable(NonNegativeInteger, R)
- exp: % -> % if R has TranscendentalFunctionCategory
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents NonNegativeInteger, R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- ground: % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- isExpt: % -> Union(Record(var: NonNegativeInteger, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- latex: % -> String
from SetCategory
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- leadingSupport: % -> IndexedExponents NonNegativeInteger
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- leadingTerm: % -> Record(k: IndexedExponents NonNegativeInteger, c: R)
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents NonNegativeInteger -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents NonNegativeInteger)
- listOfTerms: % -> List Record(k: IndexedExponents NonNegativeInteger, c: R)
from IndexedDirectProductCategory(R, IndexedExponents NonNegativeInteger)
- log: % -> % if R has TranscendentalFunctionCategory
- mainVariable: % -> Union(NonNegativeInteger, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- mapExponents: (IndexedExponents NonNegativeInteger -> IndexedExponents NonNegativeInteger, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- minimumDegree: % -> IndexedExponents NonNegativeInteger
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- minimumDegree: (%, List NonNegativeInteger) -> List NonNegativeInteger
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- minimumDegree: (%, NonNegativeInteger) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- monicDivide: (%, %, NonNegativeInteger) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- monomial: (%, List NonNegativeInteger, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- monomial: (%, NonNegativeInteger, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- monomial: (R, IndexedExponents NonNegativeInteger) -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- multivariate: (SparseUnivariatePolynomial %, NonNegativeInteger) -> %
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- multivariate: (SparseUnivariatePolynomial R, NonNegativeInteger) -> %
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents NonNegativeInteger)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if NonNegativeInteger has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if NonNegativeInteger has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- pi: () -> % if R has TranscendentalFunctionCategory
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents NonNegativeInteger, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- primitivePart: (%, NonNegativeInteger) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
- resultant: (%, %, NonNegativeInteger) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> NonNegativeInteger
- retract: % -> R
from RetractableTo R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(NonNegativeInteger, failed)
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- sec: % -> % if R has TranscendentalFunctionCategory
- sech: % -> % if R has TranscendentalFunctionCategory
- sin: % -> % if R has TranscendentalFunctionCategory
- sinh: % -> % if R has TranscendentalFunctionCategory
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents NonNegativeInteger
from FreeModuleCategory(R, IndexedExponents NonNegativeInteger)
- tan: % -> % if R has TranscendentalFunctionCategory
- tanh: % -> % if R has TranscendentalFunctionCategory
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- totalDegree: (%, List NonNegativeInteger) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- totalDegreeSorted: (%, List NonNegativeInteger) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- univariate: (%, NonNegativeInteger) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- variables: % -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
ArcHyperbolicFunctionCategory if R has TranscendentalFunctionCategory
ArcTrigonometricFunctionCategory if R has TranscendentalFunctionCategory
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom NonNegativeInteger
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and NonNegativeInteger has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and NonNegativeInteger has ConvertibleTo Pattern Integer
ElementaryFunctionCategory if R has TranscendentalFunctionCategory
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents NonNegativeInteger)
FreeModuleCategory(R, IndexedExponents NonNegativeInteger)
HyperbolicFunctionCategory if R has TranscendentalFunctionCategory
IndexedDirectProductCategory(R, IndexedExponents NonNegativeInteger)
IndexedProductCategory(R, IndexedExponents NonNegativeInteger)
InnerEvalable(%, %)
InnerEvalable(NonNegativeInteger, %)
InnerEvalable(NonNegativeInteger, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing NonNegativeInteger
PatternMatchable Float if NonNegativeInteger has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if NonNegativeInteger has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents NonNegativeInteger, NonNegativeInteger)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo NonNegativeInteger
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TranscendentalFunctionCategory if R has TranscendentalFunctionCategory
TrigonometricFunctionCategory if R has TranscendentalFunctionCategory
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit