UnivariatePuiseuxSeriesConstructorCategory(Coef, ULS)ΒΆ
puiseux.spad line 1 [edit on github]
Coef: Ring
ULS: UnivariateLaurentSeriesCategory Coef
This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair [r, f(x)]
, where r
is a positive rational number and f(x)
is a Laurent series. This pair represents the Puiseux series f(x^r)
.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if Coef has Field
from Field
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Fraction Integer)
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if Coef has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Fraction Integer) -> Coef if Coef has coerce: Symbol -> Coef and Coef has ^: (Coef, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has CharacteristicNonZero
- coefficient: (%, Fraction Integer) -> Coef
from AbelianMonoidRing(Coef, Fraction Integer)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: ULS -> %
coerce(f(x))
converts the Laurent seriesf(x)
to a Puiseux series.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- construct: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- constructOrdered: List Record(k: Fraction Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- D: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- D: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- degree: % -> Fraction Integer
degree(f(x))
returns the degree of the leading term of the Puiseux seriesf(x)
, which may have zero as a coefficient.
- differentiate: % -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, List Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, Symbol) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- euclideanSize: % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Fraction Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field
from EuclideanDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field
from GcdDomain
- integrate: % -> % if Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer and Coef has integrate: (Coef, Symbol) -> Coef and Coef has variables: Coef -> List Symbol
from UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)
- inv: % -> % if Coef has Field
from DivisionRing
- latex: % -> String
from SetCategory
- laurent: % -> ULS
laurent(f(x))
converts the Puiseux seriesf(x)
to a Laurent series if possible. Error: if this is not possible.
- laurentIfCan: % -> Union(ULS, failed)
laurentIfCan(f(x))
converts the Puiseux seriesf(x)
to a Laurent series if possible. If this is not possible, βfailedβ is returned.
- laurentRep: % -> ULS
laurentRep(f(x))
returnsg(x)
where the Puiseux seriesf(x) = g(x^r)
is represented by[r, g(x)]
.
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field
from LeftOreRing
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Fraction Integer
from IndexedProductCategory(Coef, Fraction Integer)
- leadingTerm: % -> Record(k: Fraction Integer, c: Coef)
from IndexedProductCategory(Coef, Fraction Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Fraction Integer)
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Fraction Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field
from EuclideanDomain
- multiplyExponents: (%, Fraction Integer) -> %
from UnivariatePuiseuxSeriesCategory Coef
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- order: (%, Fraction Integer) -> Fraction Integer
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra Coef
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field
from PrincipalIdealDomain
- quo: (%, %) -> % if Coef has Field
from EuclideanDomain
- rationalPower: % -> Fraction Integer
rationalPower(f(x))
returnsr
where the Puiseux seriesf(x) = g(x^r)
.
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reductum: % -> %
from IndexedProductCategory(Coef, Fraction Integer)
- rem: (%, %) -> % if Coef has Field
from EuclideanDomain
- retract: % -> ULS
from RetractableTo ULS
- retractIfCan: % -> Union(ULS, failed)
from RetractableTo ULS
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: (NonNegativeInteger, Stream Record(k: Fraction Integer, c: Coef)) -> %
from UnivariatePuiseuxSeriesCategory Coef
- sizeLess?: (%, %) -> Boolean if Coef has Field
from EuclideanDomain
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if Coef has Field
- squareFreePart: % -> % if Coef has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- terms: % -> Stream Record(k: Fraction Integer, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- truncate: (%, Fraction Integer, Fraction Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Fraction Integer)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Fraction Integer)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
canonicalsClosed if Coef has Field
canonicalUnitNormal if Coef has Field
CharacteristicNonZero if Coef has CharacteristicNonZero
CharacteristicZero if Coef has CharacteristicZero
CoercibleFrom ULS
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
DifferentialRing if Coef has *: (Fraction Integer, Coef) -> Coef
DivisionRing if Coef has Field
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %)
EntireRing if Coef has IntegralDomain
EuclideanDomain if Coef has Field
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Fraction Integer)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
LeftOreRing if Coef has Field
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
noZeroDivisors if Coef has IntegralDomain
PartialDifferentialRing Symbol if Coef has *: (Fraction Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
PowerSeriesCategory(Coef, Fraction Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if Coef has Field
RadicalCategory if Coef has Algebra Fraction Integer
RetractableTo ULS
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UniqueFactorizationDomain if Coef has Field
UnivariatePowerSeriesCategory(Coef, Fraction Integer)
UnivariatePuiseuxSeriesCategory Coef
UnivariateSeriesWithRationalExponents(Coef, Fraction Integer)