MultivariatePolynomial(vl, R)ΒΆ
multpoly.spad line 60 [edit on github]
This type is the basic representation of sparse recursive multivariate polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative, but the variables are assumed to commute.
- 0: %
- from AbelianMonoid 
- 1: %
- from MagmaWithUnit 
- *: (%, %) -> %
- from Magma 
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
- from RightModule Fraction Integer 
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
- from RightModule Integer 
- *: (%, R) -> %
- from RightModule R 
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
- from LeftModule Fraction Integer 
- *: (Integer, %) -> %
- from AbelianGroup 
- *: (NonNegativeInteger, %) -> %
- from AbelianMonoid 
- *: (PositiveInteger, %) -> %
- from AbelianSemiGroup 
- *: (R, %) -> %
- from LeftModule R 
- +: (%, %) -> %
- from AbelianSemiGroup 
- -: % -> %
- from AbelianGroup 
- -: (%, %) -> %
- from AbelianGroup 
- /: (%, R) -> % if R has Field
- from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- ^: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- ^: (%, PositiveInteger) -> %
- from Magma 
- annihilate?: (%, %) -> Boolean
- from Rng 
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
- from EntireRing 
- associator: (%, %, %) -> %
- from NonAssociativeRng 
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- characteristic: () -> NonNegativeInteger
- from NonAssociativeRing 
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, IndexedExponents OrderedVariableList vl) -> R
- from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- coefficient: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- coefficient: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- coefficients: % -> List R
- from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl) 
- coerce: % -> % if R has CommutativeRing
- from Algebra % 
- coerce: % -> OutputForm
- from CoercibleTo OutputForm 
- coerce: Fraction Integer -> % if R has Algebra Fraction Integer or R has RetractableTo Fraction Integer
- coerce: Integer -> %
- from NonAssociativeRing 
- coerce: OrderedVariableList vl -> %
- from CoercibleFrom OrderedVariableList vl 
- coerce: R -> %
- from Algebra R 
- commutator: (%, %) -> %
- from NonAssociativeRng 
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents OrderedVariableList vl, c: R) -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- constructOrdered: List Record(k: IndexedExponents OrderedVariableList vl, c: R) -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- content: % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- content: (%, OrderedVariableList vl) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- convert: % -> InputForm if R has ConvertibleTo InputForm
- from ConvertibleTo InputForm 
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float
- from ConvertibleTo Pattern Float 
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer
- from ConvertibleTo Pattern Integer 
- D: (%, List OrderedVariableList vl) -> %
- D: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- D: (%, OrderedVariableList vl) -> %
- D: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- degree: % -> IndexedExponents OrderedVariableList vl
- from AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- degree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- degree: (%, OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- differentiate: (%, List OrderedVariableList vl) -> %
- differentiate: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- differentiate: (%, OrderedVariableList vl) -> %
- differentiate: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- discriminant: (%, OrderedVariableList vl) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- eval: (%, %, %) -> %
- from InnerEvalable(%, %) 
- eval: (%, Equation %) -> %
- from Evalable % 
- eval: (%, List %, List %) -> %
- from InnerEvalable(%, %) 
- eval: (%, List Equation %) -> %
- from Evalable % 
- eval: (%, List OrderedVariableList vl, List %) -> %
- from InnerEvalable(OrderedVariableList vl, %) 
- eval: (%, List OrderedVariableList vl, List R) -> %
- from InnerEvalable(OrderedVariableList vl, R) 
- eval: (%, OrderedVariableList vl, %) -> %
- from InnerEvalable(OrderedVariableList vl, %) 
- eval: (%, OrderedVariableList vl, R) -> %
- from InnerEvalable(OrderedVariableList vl, R) 
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
- from EntireRing 
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents OrderedVariableList vl, R, %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- ground: % -> R
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- hash: % -> SingleInteger if R has Hashable
- from Hashable 
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
- from Hashable 
- isExpt: % -> Union(Record(var: OrderedVariableList vl, exponent: NonNegativeInteger), failed)
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- isPlus: % -> Union(List %, failed)
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- isTimes: % -> Union(List %, failed)
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- latex: % -> String
- from SetCategory 
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
- from LeftOreRing 
- leadingCoefficient: % -> R
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- leadingMonomial: % -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- leadingSupport: % -> IndexedExponents OrderedVariableList vl
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- leadingTerm: % -> Record(k: IndexedExponents OrderedVariableList vl, c: R)
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- leftPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- leftPower: (%, PositiveInteger) -> %
- from Magma 
- leftRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- linearExtend: (IndexedExponents OrderedVariableList vl -> R, %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl) 
- listOfTerms: % -> List Record(k: IndexedExponents OrderedVariableList vl, c: R)
- from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl) 
- mainVariable: % -> Union(OrderedVariableList vl, failed)
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- map: (R -> R, %) -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- mapExponents: (IndexedExponents OrderedVariableList vl -> IndexedExponents OrderedVariableList vl, %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- minimumDegree: % -> IndexedExponents OrderedVariableList vl
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- minimumDegree: (%, List OrderedVariableList vl) -> List NonNegativeInteger
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- minimumDegree: (%, OrderedVariableList vl) -> NonNegativeInteger
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- monicDivide: (%, %, OrderedVariableList vl) -> Record(quotient: %, remainder: %)
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- monomial?: % -> Boolean
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- monomial: (%, List OrderedVariableList vl, List NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- monomial: (%, OrderedVariableList vl, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- monomial: (R, IndexedExponents OrderedVariableList vl) -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- monomials: % -> List %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- multivariate: (SparseUnivariatePolynomial %, OrderedVariableList vl) -> %
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- multivariate: (SparseUnivariatePolynomial R, OrderedVariableList vl) -> %
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- numberOfMonomials: % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl) 
- one?: % -> Boolean
- from MagmaWithUnit 
- opposite?: (%, %) -> Boolean
- from AbelianMonoid 
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
- from PatternMatchable Float 
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
- from PatternMatchable Integer 
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
- from NonAssociativeAlgebra % 
- pomopo!: (%, R, IndexedExponents OrderedVariableList vl, %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl) 
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- primitivePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- primitivePart: (%, OrderedVariableList vl) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- recip: % -> Union(%, failed)
- from MagmaWithUnit 
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
- from LinearlyExplicitOver R 
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
- from LinearlyExplicitOver R 
- reductum: % -> %
- from IndexedProductCategory(R, IndexedExponents OrderedVariableList vl) 
- resultant: (%, %, OrderedVariableList vl) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retract: % -> Integer if R has RetractableTo Integer
- from RetractableTo Integer 
- retract: % -> OrderedVariableList vl
- from RetractableTo OrderedVariableList vl 
- retract: % -> R
- from RetractableTo R 
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
- from RetractableTo Fraction Integer 
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
- from RetractableTo Integer 
- retractIfCan: % -> Union(OrderedVariableList vl, failed)
- from RetractableTo OrderedVariableList vl 
- retractIfCan: % -> Union(R, failed)
- from RetractableTo R 
- rightPower: (%, NonNegativeInteger) -> %
- from MagmaWithUnit 
- rightPower: (%, PositiveInteger) -> %
- from Magma 
- rightRecip: % -> Union(%, failed)
- from MagmaWithUnit 
- sample: %
- from AbelianMonoid 
- smaller?: (%, %) -> Boolean if R has Comparable
- from Comparable 
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- squareFreePart: % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents OrderedVariableList vl
- from FreeModuleCategory(R, IndexedExponents OrderedVariableList vl) 
- totalDegree: % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- totalDegree: (%, List OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- totalDegreeSorted: (%, List OrderedVariableList vl) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- unit?: % -> Boolean if R has EntireRing
- from EntireRing 
- unitCanonical: % -> % if R has EntireRing
- from EntireRing 
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
- from EntireRing 
- univariate: % -> SparseUnivariatePolynomial R
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- univariate: (%, OrderedVariableList vl) -> SparseUnivariatePolynomial %
- from PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- variables: % -> List OrderedVariableList vl
- from MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl) 
- zero?: % -> Boolean
- from AbelianMonoid 
AbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom OrderedVariableList vl
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents OrderedVariableList vl)
FreeModuleCategory(R, IndexedExponents OrderedVariableList vl)
IndexedDirectProductCategory(R, IndexedExponents OrderedVariableList vl)
IndexedProductCategory(R, IndexedExponents OrderedVariableList vl)
InnerEvalable(%, %)
InnerEvalable(OrderedVariableList vl, %)
InnerEvalable(OrderedVariableList vl, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing OrderedVariableList vl
PatternMatchable Float if OrderedVariableList vl has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if OrderedVariableList vl has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents OrderedVariableList vl, OrderedVariableList vl)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo OrderedVariableList vl
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit