NewSparseMultivariatePolynomial(R, VarSet)ΒΆ
newpoly.spad line 1315 [edit on github]
R: Ring
VarSet: OrderedSet
A post-facto extension for SMP in order to speed up operations related to pseudo-division and gcd
. This domain is based on the NSUP constructor which is itself a post-facto extension of the SUP constructor.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents VarSet)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, IndexedExponents VarSet) -> R
from AbelianMonoidRing(R, IndexedExponents VarSet)
- coefficient: (%, List VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- coefficient: (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- coefficients: % -> List R
from FreeModuleCategory(R, IndexedExponents VarSet)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> Polynomial R if VarSet has ConvertibleTo Symbol
from CoercibleTo Polynomial R
- coerce: % -> SparseMultivariatePolynomial(R, VarSet)
from CoercibleTo SparseMultivariatePolynomial(R, VarSet)
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- coerce: SparseMultivariatePolynomial(R, VarSet) -> %
from CoercibleFrom SparseMultivariatePolynomial(R, VarSet)
- coerce: VarSet -> %
from CoercibleFrom VarSet
- commutator: (%, %) -> %
from NonAssociativeRng
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: IndexedExponents VarSet, c: R) -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- constructOrdered: List Record(k: IndexedExponents VarSet, c: R) -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- content: % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- content: (%, VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- convert: % -> InputForm if VarSet has ConvertibleTo InputForm and R has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if VarSet has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if VarSet has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- convert: % -> Polynomial R if VarSet has ConvertibleTo Symbol
from ConvertibleTo Polynomial R
- convert: % -> String if R has RetractableTo Integer and VarSet has ConvertibleTo Symbol
from ConvertibleTo String
- convert: Polynomial Fraction Integer -> % if R has Algebra Fraction Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- convert: Polynomial Integer -> % if R has Algebra Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- convert: Polynomial R -> % if VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- D: (%, List VarSet) -> %
from PartialDifferentialRing VarSet
- D: (%, List VarSet, List NonNegativeInteger) -> %
from PartialDifferentialRing VarSet
- D: (%, VarSet) -> %
from PartialDifferentialRing VarSet
- D: (%, VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing VarSet
- deepestInitial: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- deepestTail: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- degree: % -> IndexedExponents VarSet
from AbelianMonoidRing(R, IndexedExponents VarSet)
- degree: (%, List VarSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- degree: (%, VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- differentiate: (%, List VarSet) -> %
from PartialDifferentialRing VarSet
- differentiate: (%, List VarSet, List NonNegativeInteger) -> %
from PartialDifferentialRing VarSet
- differentiate: (%, VarSet) -> %
from PartialDifferentialRing VarSet
- differentiate: (%, VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing VarSet
- discriminant: (%, VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List VarSet, List %) -> %
from InnerEvalable(VarSet, %)
- eval: (%, List VarSet, List R) -> %
from InnerEvalable(VarSet, R)
- eval: (%, VarSet, %) -> %
from InnerEvalable(VarSet, %)
- eval: (%, VarSet, R) -> %
from InnerEvalable(VarSet, R)
- exactQuotient!: (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- exactQuotient!: (%, R) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- exactQuotient: (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- exactQuotient: (%, R) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- extendedSubResultantGcd: (%, %) -> Record(gcd: %, coef1: %, coef2: %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, IndexedExponents VarSet, R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- gcd: (%, %) -> % if R has GcdDomain
from GcdDomain
- gcd: (R, %) -> R if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- gcd: List % -> % if R has GcdDomain
from GcdDomain
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
- ground?: % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- ground: % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- halfExtendedSubResultantGcd1: (%, %) -> Record(gcd: %, coef1: %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- halfExtendedSubResultantGcd2: (%, %) -> Record(gcd: %, coef2: %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- hash: % -> SingleInteger if VarSet has Hashable and R has Hashable
from Hashable
- head: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- headReduce: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- headReduced?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- headReduced?: (%, List %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- iexactQuo: (R, R) -> R if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- infRittWu?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- init: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- initiallyReduce: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- initiallyReduced?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- initiallyReduced?: (%, List %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- isExpt: % -> Union(Record(var: VarSet, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- iteratedInitials: % -> List %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lastSubResultant: (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- latex: % -> String
from SetCategory
- LazardQuotient2: (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- LazardQuotient: (%, %, NonNegativeInteger) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPquo: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPquo: (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPrem: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPrem: (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPremWithDefault: (%, %) -> Record(coef: %, gap: NonNegativeInteger, remainder: %)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPremWithDefault: (%, %, VarSet) -> Record(coef: %, gap: NonNegativeInteger, remainder: %)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPseudoDivide: (%, %) -> Record(coef: %, gap: NonNegativeInteger, quotient: %, remainder: %)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyPseudoDivide: (%, %, VarSet) -> Record(coef: %, gap: NonNegativeInteger, quotient: %, remainder: %)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lazyResidueClass: (%, %) -> Record(polnum: %, polden: %, power: NonNegativeInteger)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, IndexedExponents VarSet)
- leadingCoefficient: (%, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- leadingMonomial: % -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- leadingSupport: % -> IndexedExponents VarSet
from IndexedProductCategory(R, IndexedExponents VarSet)
- leadingTerm: % -> Record(k: IndexedExponents VarSet, c: R)
from IndexedProductCategory(R, IndexedExponents VarSet)
- leastMonomial: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (IndexedExponents VarSet -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents VarSet)
- listOfTerms: % -> List Record(k: IndexedExponents VarSet, c: R)
from IndexedDirectProductCategory(R, IndexedExponents VarSet)
- mainCoefficients: % -> List %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainContent: % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainMonomial: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainMonomials: % -> List %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainPrimitivePart: % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainSquareFreePart: % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mainVariable: % -> Union(VarSet, failed)
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- map: (R -> R, %) -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- mapExponents: (IndexedExponents VarSet -> IndexedExponents VarSet, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- mdeg: % -> NonNegativeInteger
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- minimumDegree: % -> IndexedExponents VarSet
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- minimumDegree: (%, List VarSet) -> List NonNegativeInteger
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- minimumDegree: (%, VarSet) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monic?: % -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monicDivide: (%, %, VarSet) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monicModulo: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monomial?: % -> Boolean
from IndexedProductCategory(R, IndexedExponents VarSet)
- monomial: (%, List VarSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monomial: (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- monomial: (R, IndexedExponents VarSet) -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- multivariate: (SparseUnivariatePolynomial %, VarSet) -> %
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- multivariate: (SparseUnivariatePolynomial R, VarSet) -> %
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- mvar: % -> VarSet
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- next_subResultant2: (%, %, %, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- normalized?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- normalized?: (%, List %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- numberOfMonomials: % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents VarSet)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if VarSet has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if VarSet has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has Algebra Fraction Integer or R has CommutativeRing
from NonAssociativeAlgebra %
- pomopo!: (%, R, IndexedExponents VarSet, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
- pquo: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- pquo: (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- prem: (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- prem: (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- primitivePart!: % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- primitivePart: (%, VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- primPartElseUnitCanonical!: % -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- primPartElseUnitCanonical: % -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- pseudoDivide: (%, %) -> Record(quotient: %, remainder: %)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- quasiMonic?: % -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reduced?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- reduced?: (%, List %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, IndexedExponents VarSet)
- reductum: (%, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- resultant: (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- resultant: (%, %, VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> SparseMultivariatePolynomial(R, VarSet)
from RetractableTo SparseMultivariatePolynomial(R, VarSet)
- retract: % -> VarSet
from RetractableTo VarSet
- retract: Polynomial Fraction Integer -> % if R has Algebra Fraction Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retract: Polynomial Integer -> % if R has Algebra Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retract: Polynomial R -> % if VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(SparseMultivariatePolynomial(R, VarSet), failed)
from RetractableTo SparseMultivariatePolynomial(R, VarSet)
- retractIfCan: % -> Union(VarSet, failed)
from RetractableTo VarSet
- retractIfCan: Polynomial Fraction Integer -> Union(%, failed) if R has Algebra Fraction Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retractIfCan: Polynomial Integer -> Union(%, failed) if R has Algebra Integer and VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- retractIfCan: Polynomial R -> Union(%, failed) if VarSet has ConvertibleTo Symbol
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- RittWuCompare: (%, %) -> Union(Boolean, failed)
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- sample: %
from AbelianMonoid
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subResultantChain: (%, %) -> List % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- subResultantGcd: (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List IndexedExponents VarSet
from FreeModuleCategory(R, IndexedExponents VarSet)
- supRittWu?: (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- tail: % -> %
from RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- totalDegree: (%, List VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- totalDegreeSorted: (%, List VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- univariate: (%, VarSet) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, IndexedExponents VarSet, VarSet)
- variables: % -> List VarSet
from MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, IndexedExponents VarSet)
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom SparseMultivariatePolynomial(R, VarSet)
CoercibleFrom VarSet
CoercibleTo Polynomial R if VarSet has ConvertibleTo Symbol
CoercibleTo SparseMultivariatePolynomial(R, VarSet)
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if VarSet has ConvertibleTo InputForm and R has ConvertibleTo InputForm
ConvertibleTo Pattern Float if VarSet has ConvertibleTo Pattern Float and R has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if VarSet has ConvertibleTo Pattern Integer and R has ConvertibleTo Pattern Integer
ConvertibleTo Polynomial R if VarSet has ConvertibleTo Symbol
ConvertibleTo String if R has RetractableTo Integer and VarSet has ConvertibleTo Symbol
EntireRing if R has EntireRing
Evalable %
FiniteAbelianMonoidRing(R, IndexedExponents VarSet)
FreeModuleCategory(R, IndexedExponents VarSet)
Hashable if VarSet has Hashable and R has Hashable
IndexedDirectProductCategory(R, IndexedExponents VarSet)
IndexedProductCategory(R, IndexedExponents VarSet)
InnerEvalable(%, %)
InnerEvalable(VarSet, %)
InnerEvalable(VarSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, IndexedExponents VarSet, VarSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing VarSet
PatternMatchable Float if VarSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if VarSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, IndexedExponents VarSet, VarSet)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
RecursivePolynomialCategory(R, IndexedExponents VarSet, VarSet)
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo SparseMultivariatePolynomial(R, VarSet)
RetractableTo VarSet
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit