NewSparseUnivariatePolynomial RΒΆ
newpoly.spad line 1 [edit on github]
R: Ring
A post-facto extension for SUP in order to speed up operations related to pseudo-division and gcd
for both SUP and, consequently, NSMP.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Fraction Integer) -> % if R has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if R has LinearlyExplicitOver Integer
from RightModule Integer
- *: (%, R) -> %
from RightModule R
- *: (Fraction Integer, %) -> % if R has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (R, %) -> %
from LeftModule R
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, R) -> % if R has Field
from AbelianMonoidRing(R, NonNegativeInteger)
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- associates?: (%, %) -> Boolean if R has EntireRing
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- binomThmExpt: (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- coefficient: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient: (%, NonNegativeInteger) -> R
from FreeModuleCategory(R, NonNegativeInteger)
- coefficient: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficients: % -> List R
from FreeModuleCategory(R, NonNegativeInteger)
- coerce: % -> % if R has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: % -> SparseUnivariatePolynomial R
- coerce: Fraction Integer -> % if R has RetractableTo Fraction Integer or R has Algebra Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: R -> %
from Algebra R
- coerce: SingletonAsOrderedSet -> %
- coerce: SparseUnivariatePolynomial R -> %
- commutator: (%, %) -> %
from NonAssociativeRng
- composite: (%, %) -> Union(%, failed) if R has IntegralDomain
from UnivariatePolynomialCategory R
- composite: (Fraction %, %) -> Union(Fraction %, failed) if R has IntegralDomain
from UnivariatePolynomialCategory R
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- construct: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- constructOrdered: List Record(k: NonNegativeInteger, c: R) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- content: % -> R if R has GcdDomain
- content: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- convert: % -> InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
from ConvertibleTo InputForm
- convert: % -> Pattern Float if R has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if R has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
from ConvertibleTo Pattern Integer
- D: % -> %
from DifferentialRing
- D: (%, List SingletonAsOrderedSet) -> %
- D: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- D: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> %
from DifferentialRing
- D: (%, R -> R) -> %
from DifferentialExtension R
- D: (%, R -> R, NonNegativeInteger) -> %
from DifferentialExtension R
- D: (%, SingletonAsOrderedSet) -> %
- D: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- D: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- degree: % -> NonNegativeInteger
from AbelianMonoidRing(R, NonNegativeInteger)
- degree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate: % -> %
from DifferentialRing
- differentiate: (%, List SingletonAsOrderedSet) -> %
- differentiate: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
- differentiate: (%, List Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> %
from DifferentialRing
- differentiate: (%, R -> R) -> %
from DifferentialExtension R
- differentiate: (%, R -> R, %) -> %
from UnivariatePolynomialCategory R
- differentiate: (%, R -> R, NonNegativeInteger) -> %
from DifferentialExtension R
- differentiate: (%, SingletonAsOrderedSet) -> %
- differentiate: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- differentiate: (%, Symbol) -> % if R has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing Symbol
- discriminant: % -> R if R has CommutativeRing
from UnivariatePolynomialCategory R
- discriminant: (%, SingletonAsOrderedSet) -> % if R has CommutativeRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- divide: (%, %) -> Record(quotient: %, remainder: %) if R has Field
from EuclideanDomain
- divideExponents: (%, NonNegativeInteger) -> Union(%, failed)
from UnivariatePolynomialCategory R
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Fraction %) -> Fraction % if R has IntegralDomain
- elt: (%, R) -> R
from Eltable(R, R)
- elt: (Fraction %, Fraction %) -> Fraction % if R has IntegralDomain
from UnivariatePolynomialCategory R
- elt: (Fraction %, R) -> R if R has Field
from UnivariatePolynomialCategory R
- euclideanSize: % -> NonNegativeInteger if R has Field
from EuclideanDomain
- eval: (%, %, %) -> %
from InnerEvalable(%, %)
- eval: (%, Equation %) -> %
from Evalable %
- eval: (%, List %, List %) -> %
from InnerEvalable(%, %)
- eval: (%, List Equation %) -> %
from Evalable %
- eval: (%, List SingletonAsOrderedSet, List %) -> %
from InnerEvalable(SingletonAsOrderedSet, %)
- eval: (%, List SingletonAsOrderedSet, List R) -> %
from InnerEvalable(SingletonAsOrderedSet, R)
- eval: (%, SingletonAsOrderedSet, %) -> %
from InnerEvalable(SingletonAsOrderedSet, %)
- eval: (%, SingletonAsOrderedSet, R) -> %
from InnerEvalable(SingletonAsOrderedSet, R)
- expressIdealMember: (List %, %) -> Union(List %, failed) if R has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if R has EntireRing
from EntireRing
- exquo: (%, R) -> Union(%, failed) if R has EntireRing
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if R has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if R has Field
from EuclideanDomain
- extendedResultant: (%, %) -> Record(resultant: R, coef1: %, coef2: %) if R has IntegralDomain
extendedResultant(a, b)
returns[r, ca, cb]
such thatr
is the resultant ofa
andb
andr = ca * a + cb * b
- extendedSubResultantGcd: (%, %) -> Record(gcd: %, coef1: %, coef2: %) if R has IntegralDomain
extendedSubResultantGcd(a, b)
returns[g, ca, cb]
such thatg
is agcd
ofa
andb
inR^(-1) P
andg = ca * a + cb * b
- factor: % -> Factored % if R has PolynomialFactorizationExplicit
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- fmecg: (%, NonNegativeInteger, R, %) -> %
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GcdDomain
from GcdDomain
- ground: % -> R
- halfExtendedResultant1: (%, %) -> Record(resultant: R, coef1: %) if R has IntegralDomain
halfExtendedResultant1(a, b)
returns[r, ca]
such thatextendedResultant(a, b)
returns[r, ca, cb]
- halfExtendedResultant2: (%, %) -> Record(resultant: R, coef2: %) if R has IntegralDomain
halfExtendedResultant2(a, b)
returns[r, ca]
such thatextendedResultant(a, b)
returns[r, ca, cb]
- halfExtendedSubResultantGcd1: (%, %) -> Record(gcd: %, coef1: %) if R has IntegralDomain
halfExtendedSubResultantGcd1(a, b)
returns[g, ca]
such thatextendedSubResultantGcd(a, b)
returns[g, ca, cb]
- halfExtendedSubResultantGcd2: (%, %) -> Record(gcd: %, coef2: %) if R has IntegralDomain
halfExtendedSubResultantGcd2(a, b)
returns[g, cb]
such thatextendedSubResultantGcd(a, b)
returns[g, ca, cb]
- hash: % -> SingleInteger if R has Hashable
from Hashable
- hashUpdate!: (HashState, %) -> HashState if R has Hashable
from Hashable
- init: % if R has StepThrough
from StepThrough
- integrate: % -> % if R has Algebra Fraction Integer
from UnivariatePolynomialCategory R
- isExpt: % -> Union(Record(var: SingletonAsOrderedSet, exponent: NonNegativeInteger), failed)
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isPlus: % -> Union(List %, failed)
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- isTimes: % -> Union(List %, failed)
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- karatsubaDivide: (%, NonNegativeInteger) -> Record(quotient: %, remainder: %)
from UnivariatePolynomialCategory R
- lastSubResultant: (%, %) -> % if R has IntegralDomain
lastSubResultant(a, b)
returnsresultant(a, b)
ifa
andb
has no non-trivialgcd
inR^(-1) P
otherwise the non-zero sub-resultant with smallest index.
- latex: % -> String
from SetCategory
- lazyPseudoDivide: (%, %) -> Record(coef: R, gap: NonNegativeInteger, quotient: %, remainder: %)
lazyPseudoDivide(a, b)
returns[c, g, q, r]
such thatc^n * a = q*b +r
andlazyResidueClass(a, b)
returns[r, c, n]
wheren + g = max(0, degree(b) - degree(a) + 1)
.
- lazyPseudoQuotient: (%, %) -> %
lazyPseudoQuotient(a, b)
returnsq
iflazyPseudoDivide(a, b)
returns[c, g, q, r]
- lazyPseudoRemainder: (%, %) -> %
lazyPseudoRemainder(a, b)
returnsr
iflazyResidueClass(a, b)
returns[r, c, n]
. This lazy pseudo-remainder is computed by means of the fmecg operation.
- lazyResidueClass: (%, %) -> Record(polnum: %, polden: R, power: NonNegativeInteger)
lazyResidueClass(a, b)
returns[r, c, n]
such thatr
is reducedw
.r
.t
.b
andb
dividesc^n * a - r
wherec
isleadingCoefficient(b)
andn
is as small as possible with the previous properties.
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if R has GcdDomain
from LeftOreRing
- leadingCoefficient: % -> R
from IndexedProductCategory(R, NonNegativeInteger)
- leadingMonomial: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- leadingTerm: % -> Record(k: NonNegativeInteger, c: R)
from IndexedProductCategory(R, NonNegativeInteger)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- linearExtend: (NonNegativeInteger -> R, %) -> R if R has CommutativeRing
from FreeModuleCategory(R, NonNegativeInteger)
- listOfTerms: % -> List Record(k: NonNegativeInteger, c: R)
- mainVariable: % -> Union(SingletonAsOrderedSet, failed)
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- makeSUP: % -> SparseUnivariatePolynomial R
from UnivariatePolynomialCategory R
- map: (R -> R, %) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- mapExponents: (NonNegativeInteger -> NonNegativeInteger, %) -> %
- minimumDegree: % -> NonNegativeInteger
- minimumDegree: (%, List SingletonAsOrderedSet) -> List NonNegativeInteger
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- minimumDegree: (%, SingletonAsOrderedSet) -> NonNegativeInteger
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monicDivide: (%, %) -> Record(quotient: %, remainder: %)
from UnivariatePolynomialCategory R
- monicDivide: (%, %, SingletonAsOrderedSet) -> Record(quotient: %, remainder: %)
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monicModulo: (%, %) -> %
monicModulo(a, b)
returnsr
such thatr
is reducedw
.r
.t
.b
andb
dividesa - r
whereb
is monic.
- monomial?: % -> Boolean
from IndexedProductCategory(R, NonNegativeInteger)
- monomial: (%, List SingletonAsOrderedSet, List NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial: (R, NonNegativeInteger) -> %
from IndexedProductCategory(R, NonNegativeInteger)
- monomials: % -> List %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multiEuclidean: (List %, %) -> Union(List %, failed) if R has Field
from EuclideanDomain
- multiplyExponents: (%, NonNegativeInteger) -> %
from UnivariatePolynomialCategory R
- multivariate: (SparseUnivariatePolynomial %, SingletonAsOrderedSet) -> %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- multivariate: (SparseUnivariatePolynomial R, SingletonAsOrderedSet) -> %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- nextItem: % -> Union(%, failed) if R has StepThrough
from StepThrough
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: (%, %) -> NonNegativeInteger if R has IntegralDomain
from UnivariatePolynomialCategory R
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pomopo!: (%, R, NonNegativeInteger, %) -> %
- prime?: % -> Boolean if R has PolynomialFactorizationExplicit
- primitiveMonomials: % -> List %
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: % -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart: (%, SingletonAsOrderedSet) -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- principalIdeal: List % -> Record(coef: List %, generator: %) if R has Field
from PrincipalIdealDomain
- pseudoDivide: (%, %) -> Record(coef: R, quotient: %, remainder: %) if R has IntegralDomain
from UnivariatePolynomialCategory R
- pseudoQuotient: (%, %) -> % if R has IntegralDomain
from UnivariatePolynomialCategory R
- pseudoRemainder: (%, %) -> %
from UnivariatePolynomialCategory R
- quo: (%, %) -> % if R has Field
from EuclideanDomain
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if R has LinearlyExplicitOver Integer
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix R, vec: Vector R)
from LinearlyExplicitOver R
- reducedSystem: Matrix % -> Matrix Integer if R has LinearlyExplicitOver Integer
- reducedSystem: Matrix % -> Matrix R
from LinearlyExplicitOver R
- reductum: % -> %
from IndexedProductCategory(R, NonNegativeInteger)
- rem: (%, %) -> % if R has Field
from EuclideanDomain
- resultant: (%, %) -> R if R has CommutativeRing
from UnivariatePolynomialCategory R
- resultant: (%, %, SingletonAsOrderedSet) -> % if R has CommutativeRing
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- retract: % -> Fraction Integer if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retract: % -> Integer if R has RetractableTo Integer
from RetractableTo Integer
- retract: % -> R
from RetractableTo R
- retract: % -> SingletonAsOrderedSet
- retract: % -> SparseUnivariatePolynomial R
- retractIfCan: % -> Union(Fraction Integer, failed) if R has RetractableTo Fraction Integer
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if R has RetractableTo Integer
from RetractableTo Integer
- retractIfCan: % -> Union(R, failed)
from RetractableTo R
- retractIfCan: % -> Union(SingletonAsOrderedSet, failed)
- retractIfCan: % -> Union(SparseUnivariatePolynomial R, failed)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- separate: (%, %) -> Record(primePart: %, commonPart: %) if R has GcdDomain
from UnivariatePolynomialCategory R
- shiftLeft: (%, NonNegativeInteger) -> %
from UnivariatePolynomialCategory R
- shiftRight: (%, NonNegativeInteger) -> %
from UnivariatePolynomialCategory R
- sizeLess?: (%, %) -> Boolean if R has Field
from EuclideanDomain
- smaller?: (%, %) -> Boolean if R has Comparable
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if R has PolynomialFactorizationExplicit
- squareFree: % -> Factored % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePart: % -> % if R has GcdDomain
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PolynomialFactorizationExplicit
- subResultantGcd: (%, %) -> % if R has IntegralDomain
from UnivariatePolynomialCategory R
- subResultantsChain: (%, %) -> List % if R has IntegralDomain
subResultantsChain(a, b)
returns the list of the non-zero sub-resultants ofa
andb
sorted by increasing degree.
- subtractIfCan: (%, %) -> Union(%, failed)
- support: % -> List NonNegativeInteger
from FreeModuleCategory(R, NonNegativeInteger)
- totalDegree: % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted: (%, List SingletonAsOrderedSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit?: % -> Boolean if R has EntireRing
from EntireRing
- unitCanonical: % -> % if R has EntireRing
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if R has EntireRing
from EntireRing
- univariate: % -> SparseUnivariatePolynomial R
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- univariate: (%, SingletonAsOrderedSet) -> SparseUnivariatePolynomial %
from PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unmakeSUP: SparseUnivariatePolynomial R -> %
from UnivariatePolynomialCategory R
- unvectorise: Vector R -> %
from UnivariatePolynomialCategory R
- variables: % -> List SingletonAsOrderedSet
from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- vectorise: (%, NonNegativeInteger) -> Vector R
from UnivariatePolynomialCategory R
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(R, NonNegativeInteger)
additiveValuation if R has Field
Algebra % if R has CommutativeRing
Algebra Fraction Integer if R has Algebra Fraction Integer
Algebra R if R has CommutativeRing
BiModule(%, %)
BiModule(Fraction Integer, Fraction Integer) if R has Algebra Fraction Integer
BiModule(R, R)
canonicalUnitNormal if R has canonicalUnitNormal
CharacteristicNonZero if R has CharacteristicNonZero
CharacteristicZero if R has CharacteristicZero
CoercibleFrom Fraction Integer if R has RetractableTo Fraction Integer
CoercibleFrom Integer if R has RetractableTo Integer
CoercibleFrom SingletonAsOrderedSet
CoercibleFrom SparseUnivariatePolynomial R
CoercibleTo SparseUnivariatePolynomial R
CommutativeRing if R has CommutativeRing
CommutativeStar if R has CommutativeRing
Comparable if R has Comparable
ConvertibleTo InputForm if R has ConvertibleTo InputForm and SingletonAsOrderedSet has ConvertibleTo InputForm
ConvertibleTo Pattern Float if R has ConvertibleTo Pattern Float and SingletonAsOrderedSet has ConvertibleTo Pattern Float
ConvertibleTo Pattern Integer if R has ConvertibleTo Pattern Integer and SingletonAsOrderedSet has ConvertibleTo Pattern Integer
Eltable(%, %)
Eltable(Fraction %, Fraction %) if R has IntegralDomain
Eltable(R, R)
EntireRing if R has EntireRing
EuclideanDomain if R has Field
Evalable %
FiniteAbelianMonoidRing(R, NonNegativeInteger)
FreeModuleCategory(R, NonNegativeInteger)
IndexedDirectProductCategory(R, NonNegativeInteger)
IndexedProductCategory(R, NonNegativeInteger)
InnerEvalable(%, %)
InnerEvalable(SingletonAsOrderedSet, %)
InnerEvalable(SingletonAsOrderedSet, R)
IntegralDomain if R has IntegralDomain
LeftModule Fraction Integer if R has Algebra Fraction Integer
LeftOreRing if R has GcdDomain
LinearlyExplicitOver Integer if R has LinearlyExplicitOver Integer
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
Module % if R has CommutativeRing
Module Fraction Integer if R has Algebra Fraction Integer
Module R if R has CommutativeRing
NonAssociativeAlgebra % if R has CommutativeRing
NonAssociativeAlgebra Fraction Integer if R has Algebra Fraction Integer
NonAssociativeAlgebra R if R has CommutativeRing
noZeroDivisors if R has EntireRing
PartialDifferentialRing SingletonAsOrderedSet
PartialDifferentialRing Symbol if R has PartialDifferentialRing Symbol
PatternMatchable Float if SingletonAsOrderedSet has PatternMatchable Float and R has PatternMatchable Float
PatternMatchable Integer if SingletonAsOrderedSet has PatternMatchable Integer and R has PatternMatchable Integer
PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
PolynomialFactorizationExplicit if R has PolynomialFactorizationExplicit
PrincipalIdealDomain if R has Field
RetractableTo Fraction Integer if R has RetractableTo Fraction Integer
RetractableTo Integer if R has RetractableTo Integer
RetractableTo SingletonAsOrderedSet
RetractableTo SparseUnivariatePolynomial R
RightModule Fraction Integer if R has Algebra Fraction Integer
RightModule Integer if R has LinearlyExplicitOver Integer
StepThrough if R has StepThrough
TwoSidedRecip if R has CommutativeRing
UniqueFactorizationDomain if R has PolynomialFactorizationExplicit