UnivariateLaurentSeries(Coef, var, cen)ΒΆ
laurent.spad line 508 [edit on github]
Dense Laurent series in one variable UnivariateLaurentSeries is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, UnivariateLaurentSeries(Integer, x, 3)
represents Laurent series in (x - 3)
with integer coefficients.
- 0: %
from AbelianMonoid
- 1: %
from MagmaWithUnit
- *: (%, %) -> %
from Magma
- *: (%, Coef) -> %
from RightModule Coef
- *: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RightModule Fraction Integer
- *: (%, Integer) -> % if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
from RightModule Integer
- *: (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from RightModule UnivariateTaylorSeries(Coef, var, cen)
- *: (Coef, %) -> %
from LeftModule Coef
- *: (Fraction Integer, %) -> % if Coef has Algebra Fraction Integer
from LeftModule Fraction Integer
- *: (Integer, %) -> %
from AbelianGroup
- *: (NonNegativeInteger, %) -> %
from AbelianMonoid
- *: (PositiveInteger, %) -> %
from AbelianSemiGroup
- *: (UnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
from LeftModule UnivariateTaylorSeries(Coef, var, cen)
- +: (%, %) -> %
from AbelianSemiGroup
- -: % -> %
from AbelianGroup
- -: (%, %) -> %
from AbelianGroup
- /: (%, %) -> % if Coef has Field
from Field
- /: (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Integer)
- /: (UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- <=: (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
- <: (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
- >=: (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
- >: (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
- ^: (%, %) -> % if Coef has Algebra Fraction Integer
- ^: (%, Fraction Integer) -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- ^: (%, Integer) -> % if Coef has Field
from DivisionRing
- ^: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- ^: (%, PositiveInteger) -> %
from Magma
- abs: % -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
- annihilate?: (%, %) -> Boolean
from Rng
- antiCommutator: (%, %) -> %
- approximate: (%, Integer) -> Coef if Coef has coerce: Symbol -> Coef and Coef has ^: (Coef, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- associates?: (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
- associator: (%, %, %) -> %
from NonAssociativeRng
- ceiling: % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- center: % -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- characteristic: () -> NonNegativeInteger
from NonAssociativeRing
- charthRoot: % -> Union(%, failed) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero or Coef has CharacteristicNonZero or % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- coefficient: (%, Integer) -> Coef
from AbelianMonoidRing(Coef, Integer)
- coerce: % -> % if Coef has CommutativeRing
from Algebra %
- coerce: % -> OutputForm
from CoercibleTo OutputForm
- coerce: Coef -> % if Coef has CommutativeRing
from Algebra Coef
- coerce: Fraction Integer -> % if Coef has Algebra Fraction Integer
from CoercibleFrom Fraction Integer
- coerce: Integer -> %
from NonAssociativeRing
- coerce: Symbol -> % if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from CoercibleFrom Symbol
- coerce: UnivariateTaylorSeries(Coef, var, cen) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- coerce: Variable var -> %
coerce(var)
converts the series variablevar
into a Laurent series.
- commutator: (%, %) -> %
from NonAssociativeRng
- complete: % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- conditionP: Matrix % -> Union(Vector %, failed) if % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- construct: List Record(k: Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Integer)
- constructOrdered: List Record(k: Integer, c: Coef) -> %
from IndexedProductCategory(Coef, Integer)
- convert: % -> DoubleFloat if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo DoubleFloat
- convert: % -> Float if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo Float
- convert: % -> InputForm if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo InputForm and Coef has Field
from ConvertibleTo InputForm
- convert: % -> Pattern Float if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Float and Coef has Field
from ConvertibleTo Pattern Float
- convert: % -> Pattern Integer if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Integer and Coef has Field
from ConvertibleTo Pattern Integer
- D: % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has *: (Integer, Coef) -> Coef
from DifferentialRing
- D: (%, List Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, List Symbol, List NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has *: (Integer, Coef) -> Coef
from DifferentialRing
- D: (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- D: (%, UnivariateTaylorSeries(Coef, var, cen) -> UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from DifferentialExtension UnivariateTaylorSeries(Coef, var, cen)
- D: (%, UnivariateTaylorSeries(Coef, var, cen) -> UnivariateTaylorSeries(Coef, var, cen), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension UnivariateTaylorSeries(Coef, var, cen)
- degree: % -> Integer
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- denom: % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- denominator: % -> % if Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- differentiate: % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has *: (Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, List Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, List Symbol, List NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has *: (Integer, Coef) -> Coef
from DifferentialRing
- differentiate: (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
- differentiate: (%, UnivariateTaylorSeries(Coef, var, cen) -> UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from DifferentialExtension UnivariateTaylorSeries(Coef, var, cen)
- differentiate: (%, UnivariateTaylorSeries(Coef, var, cen) -> UnivariateTaylorSeries(Coef, var, cen), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension UnivariateTaylorSeries(Coef, var, cen)
- differentiate: (%, Variable var) -> %
differentiate(f(x), x)
returns the derivative off(x)
with respect tox
.
- divide: (%, %) -> Record(quotient: %, remainder: %) if Coef has Field
from EuclideanDomain
- elt: (%, %) -> %
from Eltable(%, %)
- elt: (%, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- elt: (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has Eltable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from Eltable(UnivariateTaylorSeries(Coef, var, cen), %)
- euclideanSize: % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
- eval: (%, Coef) -> Stream Coef if Coef has ^: (Coef, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
- eval: (%, Equation UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
from Evalable UnivariateTaylorSeries(Coef, var, cen)
- eval: (%, List Equation UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
from Evalable UnivariateTaylorSeries(Coef, var, cen)
- eval: (%, List Symbol, List UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
- eval: (%, List UnivariateTaylorSeries(Coef, var, cen), List UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
- eval: (%, Symbol, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
- eval: (%, UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
- expressIdealMember: (List %, %) -> Union(List %, failed) if Coef has Field
from PrincipalIdealDomain
- exquo: (%, %) -> Union(%, failed) if Coef has IntegralDomain
from EntireRing
- extend: (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- extendedEuclidean: (%, %) -> Record(coef1: %, coef2: %, generator: %) if Coef has Field
from EuclideanDomain
- extendedEuclidean: (%, %, %) -> Union(Record(coef1: %, coef2: %), failed) if Coef has Field
from EuclideanDomain
- factorPolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- factorSquareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- floor: % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- fractionPart: % -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if Coef has Field
- init: % if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
from StepThrough
- integrate: % -> % if Coef has Algebra Fraction Integer
from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate: (%, Symbol) -> % if Coef has Algebra Fraction Integer and Coef has integrate: (Coef, Symbol) -> Coef and Coef has variables: Coef -> List Symbol
from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate: (%, Variable var) -> % if Coef has Algebra Fraction Integer
integrate(f(x))
returns an anti-derivative of the power seriesf(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- inv: % -> % if Coef has Field
from DivisionRing
- latex: % -> String
from SetCategory
- laurent: (Integer, Stream Coef) -> %
from UnivariateLaurentSeriesCategory Coef
- laurent: (Integer, UnivariateTaylorSeries(Coef, var, cen)) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- lcmCoef: (%, %) -> Record(llcm_res: %, coeff1: %, coeff2: %) if Coef has Field
from LeftOreRing
- leadingCoefficient: % -> Coef
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingMonomial: % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingSupport: % -> Integer
from IndexedProductCategory(Coef, Integer)
- leadingTerm: % -> Record(k: Integer, c: Coef)
from IndexedProductCategory(Coef, Integer)
- leftPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- leftPower: (%, PositiveInteger) -> %
from Magma
- leftRecip: % -> Union(%, failed)
from MagmaWithUnit
- map: (Coef -> Coef, %) -> %
from IndexedProductCategory(Coef, Integer)
- map: (UnivariateTaylorSeries(Coef, var, cen) -> UnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
from FullyEvalableOver UnivariateTaylorSeries(Coef, var, cen)
- max: (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from OrderedSet
- min: (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from OrderedSet
- monomial?: % -> Boolean
from IndexedProductCategory(Coef, Integer)
- monomial: (Coef, Integer) -> %
from IndexedProductCategory(Coef, Integer)
- multiEuclidean: (List %, %) -> Union(List %, failed) if Coef has Field
from EuclideanDomain
- multiplyCoefficients: (Integer -> Coef, %) -> %
from UnivariateLaurentSeriesCategory Coef
- multiplyExponents: (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- negative?: % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
- nextItem: % -> Union(%, failed) if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
from StepThrough
- numer: % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- numerator: % -> % if Coef has Field
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- one?: % -> Boolean
from MagmaWithUnit
- opposite?: (%, %) -> Boolean
from AbelianMonoid
- order: % -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
- order: (%, Integer) -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
- patternMatch: (%, Pattern Float, PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Float and Coef has Field
from PatternMatchable Float
- patternMatch: (%, Pattern Integer, PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Integer and Coef has Field
from PatternMatchable Integer
- plenaryPower: (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra Fraction Integer
from NonAssociativeAlgebra %
- pole?: % -> Boolean
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- positive?: % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
- principalIdeal: List % -> Record(coef: List %, generator: %) if Coef has Field
from PrincipalIdealDomain
- quo: (%, %) -> % if Coef has Field
from EuclideanDomain
- rationalFunction: (%, Integer) -> Fraction Polynomial Coef if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory Coef
- rationalFunction: (%, Integer, Integer) -> Fraction Polynomial Coef if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory Coef
- recip: % -> Union(%, failed)
from MagmaWithUnit
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix Integer, vec: Vector Integer) if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
- reducedSystem: (Matrix %, Vector %) -> Record(mat: Matrix UnivariateTaylorSeries(Coef, var, cen), vec: Vector UnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
from LinearlyExplicitOver UnivariateTaylorSeries(Coef, var, cen)
- reducedSystem: Matrix % -> Matrix Integer if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
- reducedSystem: Matrix % -> Matrix UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from LinearlyExplicitOver UnivariateTaylorSeries(Coef, var, cen)
- reductum: % -> %
from IndexedProductCategory(Coef, Integer)
- rem: (%, %) -> % if Coef has Field
from EuclideanDomain
- removeZeroes: % -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- removeZeroes: (Integer, %) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- retract: % -> Fraction Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Fraction Integer
- retract: % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Integer
- retract: % -> Symbol if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from RetractableTo Symbol
- retract: % -> UnivariateTaylorSeries(Coef, var, cen)
from RetractableTo UnivariateTaylorSeries(Coef, var, cen)
- retractIfCan: % -> Union(Fraction Integer, failed) if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Fraction Integer
- retractIfCan: % -> Union(Integer, failed) if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
from RetractableTo Integer
- retractIfCan: % -> Union(Symbol, failed) if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
from RetractableTo Symbol
- retractIfCan: % -> Union(UnivariateTaylorSeries(Coef, var, cen), failed)
from RetractableTo UnivariateTaylorSeries(Coef, var, cen)
- rightPower: (%, NonNegativeInteger) -> %
from MagmaWithUnit
- rightPower: (%, PositiveInteger) -> %
from Magma
- rightRecip: % -> Union(%, failed)
from MagmaWithUnit
- sample: %
from AbelianMonoid
- series: Stream Record(k: Integer, c: Coef) -> %
from UnivariateLaurentSeriesCategory Coef
- sign: % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
- sizeLess?: (%, %) -> Boolean if Coef has Field
from EuclideanDomain
- smaller?: (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
from Comparable
- solveLinearPolynomialEquation: (List SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %, failed) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- sqrt: % -> % if Coef has Algebra Fraction Integer
from RadicalCategory
- squareFree: % -> Factored % if Coef has Field
- squareFreePart: % -> % if Coef has Field
- squareFreePolynomial: SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- subtractIfCan: (%, %) -> Union(%, failed)
- taylor: % -> UnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- taylorIfCan: % -> Union(UnivariateTaylorSeries(Coef, var, cen), failed)
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- taylorRep: % -> UnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- terms: % -> Stream Record(k: Integer, c: Coef)
from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate: (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate: (%, Integer, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
- unit?: % -> Boolean if Coef has IntegralDomain
from EntireRing
- unitCanonical: % -> % if Coef has IntegralDomain
from EntireRing
- unitNormal: % -> Record(unit: %, canonical: %, associate: %) if Coef has IntegralDomain
from EntireRing
- variable: % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Integer)
- wholePart: % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
from QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen)
- zero?: % -> Boolean
from AbelianMonoid
AbelianMonoidRing(Coef, Integer)
Algebra % if Coef has CommutativeRing
Algebra Coef if Coef has CommutativeRing
Algebra Fraction Integer if Coef has Algebra Fraction Integer
Algebra UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
ArcHyperbolicFunctionCategory if Coef has Algebra Fraction Integer
ArcTrigonometricFunctionCategory if Coef has Algebra Fraction Integer
BiModule(%, %)
BiModule(Coef, Coef)
BiModule(Fraction Integer, Fraction Integer) if Coef has Algebra Fraction Integer
BiModule(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
canonicalsClosed if Coef has Field
canonicalUnitNormal if Coef has Field
CharacteristicNonZero if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero or Coef has CharacteristicNonZero
CharacteristicZero if UnivariateTaylorSeries(Coef, var, cen) has CharacteristicZero and Coef has Field or Coef has CharacteristicZero
CoercibleFrom Fraction Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
CoercibleFrom Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
CoercibleFrom Symbol if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
CoercibleFrom UnivariateTaylorSeries(Coef, var, cen)
CommutativeRing if Coef has CommutativeRing
CommutativeStar if Coef has CommutativeRing
Comparable if UnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
ConvertibleTo DoubleFloat if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
ConvertibleTo Float if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
ConvertibleTo InputForm if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo InputForm and Coef has Field
ConvertibleTo Pattern Float if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Float and Coef has Field
ConvertibleTo Pattern Integer if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo Pattern Integer and Coef has Field
DifferentialExtension UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
DifferentialRing if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has *: (Integer, Coef) -> Coef
DivisionRing if Coef has Field
ElementaryFunctionCategory if Coef has Algebra Fraction Integer
Eltable(%, %)
Eltable(UnivariateTaylorSeries(Coef, var, cen), %) if UnivariateTaylorSeries(Coef, var, cen) has Eltable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
EntireRing if Coef has IntegralDomain
EuclideanDomain if Coef has Field
Evalable UnivariateTaylorSeries(Coef, var, cen) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
FullyEvalableOver UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
FullyLinearlyExplicitOver UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
FullyPatternMatchable UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
HyperbolicFunctionCategory if Coef has Algebra Fraction Integer
IndexedProductCategory(Coef, Integer)
InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable UnivariateTaylorSeries(Coef, var, cen)
IntegralDomain if Coef has IntegralDomain
LeftModule Coef
LeftModule Fraction Integer if Coef has Algebra Fraction Integer
LeftModule UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
LeftOreRing if Coef has Field
LinearlyExplicitOver Integer if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
LinearlyExplicitOver UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
Module % if Coef has CommutativeRing
Module Coef if Coef has CommutativeRing
Module Fraction Integer if Coef has Algebra Fraction Integer
Module UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
NonAssociativeAlgebra % if Coef has CommutativeRing
NonAssociativeAlgebra Coef if Coef has CommutativeRing
NonAssociativeAlgebra Fraction Integer if Coef has Algebra Fraction Integer
NonAssociativeAlgebra UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
noZeroDivisors if Coef has IntegralDomain
OrderedAbelianGroup if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedAbelianMonoid if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedAbelianSemiGroup if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedCancellationAbelianMonoid if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedIntegralDomain if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedRing if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
OrderedSet if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
PartialDifferentialRing Symbol if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing Symbol and Coef has Field or Coef has *: (Integer, Coef) -> Coef and Coef has PartialDifferentialRing Symbol
PartialOrder if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
Patternable UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
PatternMatchable Float if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Float and Coef has Field
PatternMatchable Integer if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable Integer and Coef has Field
PolynomialFactorizationExplicit if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
PrincipalIdealDomain if Coef has Field
QuotientFieldCategory UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
RadicalCategory if Coef has Algebra Fraction Integer
RealConstant if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
RetractableTo Fraction Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
RetractableTo Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Integer and Coef has Field
RetractableTo Symbol if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo Symbol and Coef has Field
RetractableTo UnivariateTaylorSeries(Coef, var, cen)
RightModule Coef
RightModule Fraction Integer if Coef has Algebra Fraction Integer
RightModule Integer if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver Integer and Coef has Field
RightModule UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
StepThrough if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
TranscendentalFunctionCategory if Coef has Algebra Fraction Integer
TrigonometricFunctionCategory if Coef has Algebra Fraction Integer
TwoSidedRecip if Coef has CommutativeRing
UniqueFactorizationDomain if Coef has Field
UnivariateLaurentSeriesCategory Coef
UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
UnivariatePowerSeriesCategory(Coef, Integer)